Parameter identification of linear time-invariant systems using dynamic regressor extension and mixing

被引:26
|
作者
Aranovskiy, Stanislav [1 ,2 ]
Belov, Alexey [2 ,3 ]
Ortega, Romeo [4 ]
Barabanov, Nikita [2 ,5 ]
Bobtsov, Alexey [2 ]
机构
[1] Cent Supelec, IETR, Equipe Automat, Ave Boulaie, F-35576 Cesson Sevigne, France
[2] ITMO Univ, Fac Control Syst & Robot, St Petersburg 197101, Russia
[3] Russian Acad Sci, VA Trapeznikov Inst Control Sci, Lab Dynam Control Syst, Moscow, Russia
[4] Cent Supelec, CNRS, Lab Signaux & Syst, Gif Sur Yvette, France
[5] North Dakota State Univ, Dept Math, Fargo, ND USA
关键词
DREM; persistent excitation; system identification; transient performance; POSITION OBSERVER; ESTIMATORS; STABILITY;
D O I
10.1002/acs.3006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dynamic regressor extension and mixing (DREM) is a new technique for parameter estimation that has proven instrumental in the solution of several open problems in system identification and adaptive control. A key property of the estimator is that, by generation of scalar regression models, it guarantees monotonicity of each element of the parameter error vector that is a much stronger property than monotonicity of the vector norm, as ensured with classical gradient or least-squares estimators. On the other hand, the overall performance improvement of the estimator is strongly dependent on the suitable choice of certain operators that enter in the design. In this paper, we investigate the impact of these operators on the convergence properties of the estimator in the context of identification of linear single-input single-output time-invariant systems with periodic excitation. The most important contribution is that the DREM (almost surely) converges under the same persistence of excitation (PE) conditions as the gradient estimator while providing improved transient performance. In particular, we give some guidelines how to select the DREM operators to ensure convergence under the same PE conditions as standard identification schemes.
引用
收藏
页码:1016 / 1030
页数:15
相关论文
共 50 条
  • [1] Linear and Time-Invariant Dynamic Systems
    不详
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2023, 43 (05): : 76 - 76
  • [2] Identification of Linear Time-Invariant Systems with Dynamic Mode Decomposition
    Heiland, Jan
    Unger, Benjamin
    [J]. MATHEMATICS, 2022, 10 (03)
  • [3] Identification of linear time-invariant systems
    Larin V.B.
    Apostolyuk A.S.
    [J]. International Applied Mechanics, 2011, 47 (6) : 754 - 760
  • [4] Parameter Identification of Linear Time-Invariant Systems with Large Measurement Noises
    Fuh, Chyun-Chau
    Tsai, Hsun-Heng
    Lin, Hung-Che
    [J]. PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 2874 - 2878
  • [5] Identification of Linear Time-invariant, Nonlinear and Time Varying Dynamic Systems Using Genetic Programming
    Yuan, Xiao-lei
    Bai, Yan
    Dong, Ling
    [J]. 2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 56 - 61
  • [6] Parameter Identification of Discrete-time Linear Time-invariant Systems Using State and Input Data
    Wei, Yusheng
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2024, 22 (01) : 333 - 346
  • [7] Parameter Identification of Discrete-time Linear Time-invariant Systems Using State and Input Data
    Yusheng Wei
    [J]. International Journal of Control, Automation and Systems, 2024, 22 : 333 - 346
  • [8] IDENTIFICATION OF LINEAR TIME-INVARIANT SYSTEMS USING EXPONENTIAL SIGNALS
    KHATWANI, KJ
    BAJWA, JS
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1975, AC20 (01) : 146 - 148
  • [9] Dynamic observers for linear time-invariant systems
    Park, JK
    Shin, DR
    Chung, TM
    [J]. AUTOMATICA, 2002, 38 (06) : 1083 - 1087
  • [10] Ensemble Control of Time-Invariant Linear Systems with Linear Parameter Variation
    Li, Jr-Shin
    Qi, Ji
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (10) : 2808 - 2820