Parameter identification of linear time-invariant systems using dynamic regressor extension and mixing

被引:26
|
作者
Aranovskiy, Stanislav [1 ,2 ]
Belov, Alexey [2 ,3 ]
Ortega, Romeo [4 ]
Barabanov, Nikita [2 ,5 ]
Bobtsov, Alexey [2 ]
机构
[1] Cent Supelec, IETR, Equipe Automat, Ave Boulaie, F-35576 Cesson Sevigne, France
[2] ITMO Univ, Fac Control Syst & Robot, St Petersburg 197101, Russia
[3] Russian Acad Sci, VA Trapeznikov Inst Control Sci, Lab Dynam Control Syst, Moscow, Russia
[4] Cent Supelec, CNRS, Lab Signaux & Syst, Gif Sur Yvette, France
[5] North Dakota State Univ, Dept Math, Fargo, ND USA
关键词
DREM; persistent excitation; system identification; transient performance; POSITION OBSERVER; ESTIMATORS; STABILITY;
D O I
10.1002/acs.3006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dynamic regressor extension and mixing (DREM) is a new technique for parameter estimation that has proven instrumental in the solution of several open problems in system identification and adaptive control. A key property of the estimator is that, by generation of scalar regression models, it guarantees monotonicity of each element of the parameter error vector that is a much stronger property than monotonicity of the vector norm, as ensured with classical gradient or least-squares estimators. On the other hand, the overall performance improvement of the estimator is strongly dependent on the suitable choice of certain operators that enter in the design. In this paper, we investigate the impact of these operators on the convergence properties of the estimator in the context of identification of linear single-input single-output time-invariant systems with periodic excitation. The most important contribution is that the DREM (almost surely) converges under the same persistence of excitation (PE) conditions as the gradient estimator while providing improved transient performance. In particular, we give some guidelines how to select the DREM operators to ensure convergence under the same PE conditions as standard identification schemes.
引用
收藏
页码:1016 / 1030
页数:15
相关论文
共 50 条
  • [21] Conditions for Convergence of Dynamic Regressor Extension and Mixing Parameter Estimators Using LTI Filters
    Yi, Bowen
    Ortega, Romeo
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (02) : 1253 - 1258
  • [22] Dynamic Equilibrium State Controllability of Linear Time-invariant Systems
    Qiu, Dehui
    Wang, Qinglin
    Zhou, You
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 3430 - 3434
  • [23] Simulation of discrete linear time-invariant fuzzy dynamic systems
    Puig, Vicenc
    Saludes, Jordi
    Quevedo, Joseba
    FUZZY SETS AND SYSTEMS, 2008, 159 (07) : 787 - 803
  • [24] Performance Enhancement of Parameter Estimators via Dynamic Regressor Extension and Mixing
    Aranovskiy, Stanislav
    Bobtsov, Alexey
    Ortega, Romeo
    Pyrkin, Anton
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (07) : 3546 - 3550
  • [25] STABILITY OF LINEAR TIME-INVARIANT SYSTEMS
    THATHACHAR, MA
    SRINATH, MD
    NARENDRA, KS
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1967, AC12 (03) : 335 - +
  • [26] SIMULATION OF LINEAR TIME-INVARIANT SYSTEMS
    OTHMER, FE
    ARCHIV FUR ELEKTRONIK UND UBERTRAGUNGSTECHNIK, 1973, 27 (09): : 397 - 403
  • [27] CONTROLLABILITY OF LINEAR TIME-INVARIANT SYSTEMS
    AEYELS, D
    INTERNATIONAL JOURNAL OF CONTROL, 1987, 46 (06) : 2027 - 2034
  • [28] STABILITY OF LINEAR TIME-INVARIANT SYSTEMS
    DESOER, CA
    WU, MY
    IEEE TRANSACTIONS ON CIRCUIT THEORY, 1968, CT15 (03): : 245 - +
  • [29] STRUCTURES OF LINEAR TIME-INVARIANT SYSTEMS
    PETROV, BN
    BABAK, SF
    ILIASOV, BG
    IUSUPOV, II
    DOKLADY AKADEMII NAUK SSSR, 1980, 250 (01): : 55 - 58
  • [30] Dynamic metrology - an approach to dynamic evaluation of linear time-invariant measurement systems
    Hessling, J. P.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2008, 19 (08)