An elementary aspect of the Weyl-Wigner representation

被引:4
|
作者
Dahl, JP
Schleich, WP
机构
[1] Tech Univ Denmark, Dept Chem, DK-2800 Lyngby, Denmark
[2] Univ Ulm, Abt Quantenphys, D-89069 Ulm, Germany
来源
关键词
D O I
10.1002/prop.200310007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is an elementary aspect of the Weyl-Wigner representation of quantum mechanics that the dynamical phase-space function corresponding to the square of a quantum-mechanical operator is, in general, different from the square of the function representing the operator itself. We call attention to some conceptual consequences of this fact.
引用
收藏
页码:85 / 91
页数:7
相关论文
共 50 条
  • [41] LATTICE WEYL-WIGNER FORMULATION OF EXACT MANY-BODY QUANTUM-TRANSPORT THEORY AND APPLICATIONS TO NOVEL SOLID-STATE QUANTUM-BASED DEVICES
    BUOT, FA
    JENSEN, KL
    [J]. PHYSICAL REVIEW B, 1990, 42 (15) : 9429 - 9457
  • [42] CORRESPONDENCE LIMIT IN THE WIGNER-WEYL PICTURE
    SMITH, TB
    [J]. PHYSICS LETTERS A, 1983, 95 (05) : 219 - 222
  • [43] Wigner-Weyl calculus in Keldysh technique
    Banerjee, C.
    Fialkovsky, I., V
    Lewkowicz, M.
    Zhang, C. X.
    Zubkov, M. A.
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2021, 20 (06) : 2255 - 2283
  • [44] Working in phase-space with Wigner and Weyl
    Ben-Benjamin, Jonathan S.
    Kim, Moochan B.
    Schleich, Wolfgang P.
    Case, William B.
    Cohen, Leon
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2017, 65 (6-8):
  • [45] The Weyl-Wigner-Moyal formalism for spin
    Li, Feifei
    Braun, Carol
    Garg, Anupam
    [J]. EPL, 2013, 102 (06)
  • [46] WIGNER-WEYL FORMALISMS FOR TOROIDAL GEOMETRIES
    KASPERKOVITZ, P
    PEEV, M
    [J]. ANNALS OF PHYSICS, 1994, 230 (01) : 21 - 51
  • [47] Weyl calculus and wigner transform on the Poincare disk
    Tate, T
    [J]. NONCOMMUTATIVE DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS TO PHYSICS, PROCEEDINGS, 2001, 23 : 227 - 243
  • [48] Wigner-Weyl calculus in Keldysh technique
    C. Banerjee
    I. V. Fialkovsky
    M. Lewkowicz
    C. X. Zhang
    M. A. Zubkov
    [J]. Journal of Computational Electronics, 2021, 20 : 2255 - 2283
  • [49] On the Weinstein–Wigner transform and Weinstein–Weyl transform
    Ahmed Saoudi
    [J]. Journal of Pseudo-Differential Operators and Applications, 2020, 11 : 1 - 14
  • [50] Wigner–Weyl–Moyal Formalism on Algebraic Structures
    Frank Antonsen
    [J]. International Journal of Theoretical Physics, 1998, 37 : 697 - 757