Working in phase-space with Wigner and Weyl

被引:8
|
作者
Ben-Benjamin, Jonathan S. [1 ,2 ,3 ]
Kim, Moochan B. [1 ,2 ]
Schleich, Wolfgang P. [1 ,2 ,4 ,5 ,6 ]
Case, William B. [7 ]
Cohen, Leon [8 ,9 ]
机构
[1] Texas A&M Univ, IQSE, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[3] Baylor Univ, Dept Phys, Waco, TX 76798 USA
[4] Univ Ulm, Inst Quantenphys, Albert Einstein Allee 11, D-89069 Ulm, Germany
[5] Univ Ulm, Ctr Integrated Quantum Sci & Technol IQST, Albert Einstein Allee 11, D-89069 Ulm, Germany
[6] Texas A&M Univ, Texas A&M Univ Inst Adv Study TIAS, College Stn, TX 77843 USA
[7] Grinnell Coll, Dept Phys, POB 805, Grinnell, IA 50112 USA
[8] CUNY Hunter Coll, Dept Phys & Astron, New York, NY 10065 USA
[9] CUNY, Grad Ctr, New York, NY 10065 USA
来源
基金
美国国家科学基金会;
关键词
Phase space quantum mechanics; Wigner Weyl distribution; Wigner Weyl symmetric ordering; Weyl and its inverse transform; operator symbol correspondence;
D O I
10.1002/prop.201600092
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum phase-space distributions offer a royal road into the fascinating quantum-classical interface; the Wigner function being the first and best example. However, the subject is frequent with subtleties and textbook-level misinformation; e.g. The Wigner distribution can give wrong answers for some operator expectation values . Since the Wigner distribution is just another representation of the density matrix, it must yield correct answers. To that end, Marlan Scully has asked at several international conferences (the 2015 Prague conference being one of them) the following question: Starting with the density matrix (not the Moyal characteristic function), could you give me a simple direct derivation of the Wigner distribution? Section contains his answer. In Appendix D, we give a related treatment and make contact with other approaches. We hope that as a result of our studies, the Wigner distribution will become more deeply appreciated.
引用
收藏
页数:11
相关论文
共 50 条
  • [2] Weyl and Wigner functions in an extended phase-space formalism
    Chountasis, S
    Vourdas, A
    [J]. PHYSICAL REVIEW A, 1998, 58 (03): : 1794 - 1798
  • [3] WEYL RULE AND WIGNER EQUIVALENTS FOR PHASE-SPACE MULTINOMIALS
    HALL, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (01): : 29 - 36
  • [4] ONE-DIMENSIONAL POTENTIALS IN THE PHASE-SPACE FORMALISM OF WEYL-WIGNER-MOYAL
    CHETOUANI, L
    HAMMANN, TF
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1986, 92 (01): : 106 - 120
  • [5] QUANTUM POTENTIAL IN THE WIGNER PHASE-SPACE
    LEE, HW
    [J]. PHYSICS LETTERS A, 1990, 146 (06) : 287 - 292
  • [6] WIGNER PHASE-SPACE FUNCTION AND THE BOND IN LIH
    SPRINGBORG, M
    [J]. THEORETICA CHIMICA ACTA, 1983, 63 (04): : 349 - 356
  • [7] Wigner phase-space distribution as a wave function
    Bondar, Denys I.
    Cabrera, Renan
    Zhdanov, Dmitry V.
    Rabitz, Herschel A.
    [J]. PHYSICAL REVIEW A, 2013, 88 (05):
  • [8] WIGNER PHASE-SPACE REPRESENTATION OF THERMAL EXCITATIONS
    BERMAN, M
    [J]. PHYSICAL REVIEW A, 1990, 42 (04): : 1863 - 1868
  • [9] WIGNER PHASE-SPACE DESCRIPTION OF A MORSE OSCILLATOR
    LEE, HW
    SCULLY, MO
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1982, 77 (09): : 4604 - 4610
  • [10] Experimental reconstruction of Wigner phase-space current
    Chen, Yi-Ru
    Hsieh, Hsien-Yi
    Ning, Jingyu
    Wu, Hsun-Chung
    Li Chen, Hua
    Chuang, You-Lin
    Yang, Popo
    Steuernagel, Ole
    Wu, Chien-Ming
    Lee, Ray-Kuang
    [J]. PHYSICAL REVIEW A, 2023, 108 (02)