ONE-DIMENSIONAL POTENTIALS IN THE PHASE-SPACE FORMALISM OF WEYL-WIGNER-MOYAL

被引:11
|
作者
CHETOUANI, L
HAMMANN, TF
机构
关键词
D O I
10.1007/BF02729700
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:106 / 120
页数:15
相关论文
共 50 条
  • [1] The Weyl-Wigner-Moyal formalism for spin
    Li, Feifei
    Braun, Carol
    Garg, Anupam
    [J]. EPL, 2013, 102 (06)
  • [2] The Weyl-Wigner-Moyal formalism .2. The Moyal bracket
    Plebanski, JF
    Przanowski, M
    Tosiek, J
    [J]. ACTA PHYSICA POLONICA B, 1996, 27 (09): : 1961 - 1990
  • [3] Weyl-Wigner-Moyal formalism II. The Moyal bracket
    [J]. Acta Phys Pol Ser B, 9 (1961):
  • [4] The Weyl-Wigner-Moyal formalism. III. The generalized Moyal product in the curved phase space
    Przanowski, M
    Tosiek, J
    [J]. ACTA PHYSICA POLONICA B, 1999, 30 (02): : 179 - 201
  • [5] Weyl-Wigner-Moyal formalism for Fermi classical systems
    Galaviz, I.
    Garcia-Compean, H.
    Przanowski, M.
    Turrubiates, F. J.
    [J]. ANNALS OF PHYSICS, 2008, 323 (02) : 267 - 290
  • [6] Peculiarities of the Weyl-Wigner-Moyal formalism for scalar charged particles
    Lev, BI
    Semenov, AA
    Usenko, CV
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (20): : 4323 - 4339
  • [7] WEYL-WIGNER-MOYAL FORMALISM .1. OPERATOR ORDERING
    TOSIEK, J
    PRZANOWSKI, M
    [J]. ACTA PHYSICA POLONICA B, 1995, 26 (11): : 1703 - 1716
  • [8] The Weyl-Wigner-Moyal Formalism on a Discrete Phase Space. I. A Wigner Function for a Nonrelativistic Particle with Spin
    Przanowski, Maciej
    Tosiek, Jaromir
    Turrubiates, Francisco J.
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2019, 67 (12):
  • [9] On the reduced SU(N) gauge theory in the Weyl-Wigner-Moyal formalism
    Garcia-Compean, H
    Plebanski, JF
    Quiroz-Perez, N
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1998, 13 (13): : 2089 - 2102
  • [10] Weyl and Wigner functions in an extended phase-space formalism
    Chountasis, S
    Vourdas, A
    [J]. PHYSICAL REVIEW A, 1998, 58 (03): : 1794 - 1798