Weyl-Wigner-Moyal formalism for Fermi classical systems

被引:7
|
作者
Galaviz, I. [1 ]
Garcia-Compean, H. [1 ,2 ]
Przanowski, M. [3 ]
Turrubiates, F. J. [4 ]
机构
[1] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Mexico City 07000, DF, Mexico
[2] IPN, Ctr Invest & Estudios Avanzados, Unidad Monterrey Cerro Mitras 2565, Monterrey NL 64060, Mexico
[3] Tech Univ Lodz, Inst Phys, PL-93005 Lodz, Poland
[4] IPN, Escuela Super Fis & Matemat, Dept Fis, Unidad Adolfo Lopez Mateos, Mexico City 07738, DF, Mexico
关键词
deformation quantization; quantum mechanics; fermionic systems;
D O I
10.1016/j.aop.2007.04.004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Weyl-Wigner-Moyal formalism of fermionic classical systems with a finite number of degrees of freedom is considered. The Weyl correspondence is studied by computing the relevant Stratonovich-Weyl quantizer. The Moyal star-product, Wigner functions and normal ordering are obtained for generic fermionic systems. Finally, this formalism is used to perform the deformation quantization of the Fermi oscillator and the supersymmetric quantum mechanics. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:267 / 290
页数:24
相关论文
共 50 条
  • [1] The Weyl-Wigner-Moyal formalism for spin
    Li, Feifei
    Braun, Carol
    Garg, Anupam
    [J]. EPL, 2013, 102 (06)
  • [2] The Weyl-Wigner-Moyal formalism .2. The Moyal bracket
    Plebanski, JF
    Przanowski, M
    Tosiek, J
    [J]. ACTA PHYSICA POLONICA B, 1996, 27 (09): : 1961 - 1990
  • [3] Weyl-Wigner-Moyal formalism II. The Moyal bracket
    [J]. Acta Phys Pol Ser B, 9 (1961):
  • [4] Peculiarities of the Weyl-Wigner-Moyal formalism for scalar charged particles
    Lev, BI
    Semenov, AA
    Usenko, CV
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (20): : 4323 - 4339
  • [5] WEYL-WIGNER-MOYAL FORMALISM .1. OPERATOR ORDERING
    TOSIEK, J
    PRZANOWSKI, M
    [J]. ACTA PHYSICA POLONICA B, 1995, 26 (11): : 1703 - 1716
  • [6] On the reduced SU(N) gauge theory in the Weyl-Wigner-Moyal formalism
    Garcia-Compean, H
    Plebanski, JF
    Quiroz-Perez, N
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1998, 13 (13): : 2089 - 2102
  • [7] ONE-DIMENSIONAL POTENTIALS IN THE PHASE-SPACE FORMALISM OF WEYL-WIGNER-MOYAL
    CHETOUANI, L
    HAMMANN, TF
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1986, 92 (01): : 106 - 120
  • [8] The Weyl-Wigner-Moyal formalism. III. The generalized Moyal product in the curved phase space
    Przanowski, M
    Tosiek, J
    [J]. ACTA PHYSICA POLONICA B, 1999, 30 (02): : 179 - 201
  • [9] On the Weyl-Wigner-Moyal description of SU(∞) Nahm equations
    García-Compeán, Hugo
    Plebański, Jerzy F.
    [J]. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 234 (01): : 5 - 12
  • [10] NONNEGATIVE MIXED STATES IN WEYL-WIGNER-MOYAL THEORY
    GRACIABONDIA, JM
    VARILLY, JC
    [J]. PHYSICS LETTERS A, 1988, 128 (1-2) : 20 - 24