New Efficient Regression Method for Local AADT Estimation via SCAD Variable Selection

被引:5
|
作者
Yang, Bingduo [1 ,2 ]
Wang, Sheng-Guo [3 ]
Bao, Yuanlu [4 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Finance, Nanchang 330013, Peoples R China
[2] Univ N Carolina, Charlotte, NC 28223 USA
[3] Univ N Carolina, Lee Coll Engn, Charlotte, NC 28223 USA
[4] Univ Sci & Technol China, Dept Automat, Hefei 230026, Peoples R China
基金
美国国家科学基金会;
关键词
Annual average daily traffic (AADT); regression; satellite information; smoothly clipped absolute deviation penalty (SCAD); NONCONCAVE PENALIZED LIKELIHOOD; TRAFFIC FLOW; LASSO;
D O I
10.1109/TITS.2014.2318039
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper focuses on the estimation and variable selection for the local annual average daily traffic (AADT). The variable selection procedure by smoothly clipped absolute deviation penalty is proposed. It can simultaneously select significant variables and estimate unknown regression coefficients in one step. The estimation algorithm and the tuning parameters selection are presented. The data from Mecklenburg County, North Carolina, USA, in 2007 are used for demonstration with our proposed variable selection procedures. The results show that this penalized regression technology improves the local AADT estimation along with satellite information, and it outperforms some other benchmark models.
引用
收藏
页码:2726 / 2731
页数:6
相关论文
共 50 条
  • [1] Efficient Local AADT Estimation via SCAD Variable Selection Based on Regression Models
    Yang, Bingduo
    Wang, Sheng-Guo
    Bao, Yuanlu
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 1898 - +
  • [2] FULLY EFFICIENT ROBUST ESTIMATION, OUTLIER DETECTION AND VARIABLE SELECTION VIA PENALIZED REGRESSION
    Kong, Dehan
    Bondell, Howard D.
    Wu, Yichao
    STATISTICA SINICA, 2018, 28 (02) : 1031 - 1052
  • [3] Variable selection and parameter estimation via WLAD-SCAD with a diverging number of parameters
    Yanxin Wang
    Li Zhu
    Journal of the Korean Statistical Society, 2017, 46 : 390 - 403
  • [4] Variable selection and parameter estimation via WLAD-SCAD with a diverging number of parameters
    Wang, Yanxin
    Zhu, Li
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (03) : 390 - 403
  • [5] A robust and efficient variable selection method for linear regression
    Yang, Zhuoran
    Fu, Liya
    Wang, You-Gan
    Dong, Zhixiong
    Jiang, Yunlu
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (14) : 3677 - 3692
  • [6] VARIABLE SELECTION AND COEFFICIENT ESTIMATION VIA REGULARIZED RANK REGRESSION
    Leng, Chenlei
    STATISTICA SINICA, 2010, 20 (01) : 167 - 181
  • [7] Variable Selection via SCAD-Penalized Quantile Regression for High-Dimensional Count Data
    Khan, Dost Muhammad
    Yaqoob, Anum
    Iqbal, Nadeem
    Wahid, Abdul
    Khalil, Umair
    Khan, Mukhtaj
    Abd Rahman, Mohd Amiruddin
    Mustafa, Mohd Shafie
    Khan, Zardad
    IEEE ACCESS, 2019, 7 : 153205 - 153216
  • [8] Group variable selection via SCAD-L2
    Zeng, Lingmin
    Xie, Jun
    STATISTICS, 2014, 48 (01) : 49 - 66
  • [9] Model selection and estimation in high dimensional regression models with group SCAD
    Guo, Xiao
    Zhang, Hai
    Wang, Yao
    Wu, Jiang-Lun
    STATISTICS & PROBABILITY LETTERS, 2015, 103 : 86 - 92
  • [10] Variable selection via penalized minimum φ-divergence estimation in logistic regression
    Sakate, D. M.
    Kashid, D. N.
    JOURNAL OF APPLIED STATISTICS, 2014, 41 (06) : 1233 - 1246