Model selection and estimation in high dimensional regression models with group SCAD

被引:11
|
作者
Guo, Xiao [1 ]
Zhang, Hai [1 ,2 ]
Wang, Yao [3 ]
Wu, Jiang-Lun [1 ,4 ]
机构
[1] NW Univ Xian, Sch Math, Xian 710069, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[4] Swansea Univ, Coll Sci, Dept Math, Swansea SA2 8PP, W Glam, Wales
基金
中国国家自然科学基金;
关键词
Group selection; High dimension; Oracle property; Group SCAD; Sparsity; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; GENE-EXPRESSION;
D O I
10.1016/j.spl.2015.04.017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the oracle property of the group SCAD under high dimensional settings where the number of groups can grow at a certain polynomial rate. Numerical studies are presented to demonstrate the merit of the group SCAD. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:86 / 92
页数:7
相关论文
共 50 条
  • [1] Efficient Local AADT Estimation via SCAD Variable Selection Based on Regression Models
    Yang, Bingduo
    Wang, Sheng-Guo
    Bao, Yuanlu
    [J]. 2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 1898 - +
  • [2] SCAD-PENALIZED REGRESSION IN HIGH-DIMENSIONAL PARTIALLY LINEAR MODELS
    Xie, Huiliang
    Huang, Jian
    [J]. ANNALS OF STATISTICS, 2009, 37 (02): : 673 - 696
  • [3] Variance estimation in high dimensional regression models
    Chatterjee, S
    Bose, A
    [J]. STATISTICA SINICA, 2000, 10 (02) : 497 - 515
  • [4] SCAD-Penalized Least Absolute Deviation Regression in High-Dimensional Models
    Wang, Mingqiu
    Song, Lixin
    Tian, Guo-Liang
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (12) : 2452 - 2472
  • [5] SCAD-penalized quantile regression for high-dimensional data analysis and variable selection
    Amin, Muhammad
    Song, Lixin
    Thorlie, Milton Abdul
    Wang, Xiaoguang
    [J]. STATISTICA NEERLANDICA, 2015, 69 (03) : 212 - 235
  • [6] Variance estimation for high-dimensional regression models
    Spokoiny, V
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2002, 82 (01) : 111 - 133
  • [7] Model Selection for High Dimensional Nonparametric Additive Models via Ridge Estimation
    Wang, Haofeng
    Jin, Hongxia
    Jiang, Xuejun
    Li, Jingzhi
    [J]. MATHEMATICS, 2022, 10 (23)
  • [8] Variable Selection via SCAD-Penalized Quantile Regression for High-Dimensional Count Data
    Khan, Dost Muhammad
    Yaqoob, Anum
    Iqbal, Nadeem
    Wahid, Abdul
    Khalil, Umair
    Khan, Mukhtaj
    Abd Rahman, Mohd Amiruddin
    Mustafa, Mohd Shafie
    Khan, Zardad
    [J]. IEEE ACCESS, 2019, 7 : 153205 - 153216
  • [9] Consistent group selection in high-dimensional linear regression
    Wei, Fengrong
    Huang, Jian
    [J]. BERNOULLI, 2010, 16 (04) : 1369 - 1384
  • [10] Variable selection and estimation in high-dimensional models
    Horowitz, Joel L.
    [J]. CANADIAN JOURNAL OF ECONOMICS-REVUE CANADIENNE D ECONOMIQUE, 2015, 48 (02): : 389 - 407