Model selection and estimation in high dimensional regression models with group SCAD

被引:11
|
作者
Guo, Xiao [1 ]
Zhang, Hai [1 ,2 ]
Wang, Yao [3 ]
Wu, Jiang-Lun [1 ,4 ]
机构
[1] NW Univ Xian, Sch Math, Xian 710069, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[4] Swansea Univ, Coll Sci, Dept Math, Swansea SA2 8PP, W Glam, Wales
基金
中国国家自然科学基金;
关键词
Group selection; High dimension; Oracle property; Group SCAD; Sparsity; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; GENE-EXPRESSION;
D O I
10.1016/j.spl.2015.04.017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the oracle property of the group SCAD under high dimensional settings where the number of groups can grow at a certain polynomial rate. Numerical studies are presented to demonstrate the merit of the group SCAD. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:86 / 92
页数:7
相关论文
共 50 条
  • [31] A systematic review on model selection in high-dimensional regression
    Lee, Eun Ryung
    Cho, Jinwoo
    Yu, Kyusang
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2019, 48 (01) : 1 - 12
  • [32] A systematic review on model selection in high-dimensional regression
    Eun Ryung Lee
    Jinwoo Cho
    Kyusang Yu
    [J]. Journal of the Korean Statistical Society, 2019, 48 : 1 - 12
  • [33] Forward selection and estimation in high dimensional single index models
    Luo, Shikai
    Ghosal, Subhashis
    [J]. STATISTICAL METHODOLOGY, 2016, 33 : 172 - 179
  • [34] A Selective Review of Group Selection in High-Dimensional Models
    Huang, Jian
    Breheny, Patrick
    Ma, Shuangge
    [J]. STATISTICAL SCIENCE, 2012, 27 (04) : 481 - 499
  • [35] An Improved Forward Regression Variable Selection Algorithm for High-Dimensional Linear Regression Models
    Xie, Yanxi
    Li, Yuewen
    Xia, Zhijie
    Yan, Ruixia
    [J]. IEEE ACCESS, 2020, 8 (08): : 129032 - 129042
  • [36] Estimation and selection for spatial confounding regression models
    Yang, Hong-Ding
    Chiou, Yung-Huei
    Chen, Chun-Shu
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (03) : 939 - 955
  • [37] Estimation and Model Selection in Dirichlet Regression
    Camargo, Andre P.
    Stern, Julio M.
    Lauretto, Marcelo S.
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2012, 1443 : 206 - 213
  • [38] SEQUENTIAL MODEL AVERAGING FOR HIGH DIMENSIONAL LINEAR REGRESSION MODELS
    Lan, Wei
    Ma, Yingying
    Zhao, Junlong
    Wang, Hansheng
    Tsai, Chih-Ling
    [J]. STATISTICA SINICA, 2018, 28 (01) : 449 - 469
  • [39] TIME-VARYING NONLINEAR REGRESSION MODELS: NONPARAMETRIC ESTIMATION AND MODEL SELECTION
    Zhang, Ting
    Wu, Wei Biao
    [J]. ANNALS OF STATISTICS, 2015, 43 (02): : 741 - 768
  • [40] Nonnegative estimation and variable selection under minimax concave penalty for sparse high-dimensional linear regression models
    Li, Ning
    Yang, Hu
    [J]. STATISTICAL PAPERS, 2021, 62 (02) : 661 - 680