FINITE ELEMENT/HOLOMORPHIC OPERATOR FUNCTION METHOD FOR THE TRANSMISSION EIGENVALUE PROBLEM

被引:6
|
作者
Gong, Bo [1 ]
Sun, Jiguang [2 ]
Turner, Tiara [3 ]
Zheng, Chunxiong [4 ,5 ]
机构
[1] Beijing Univ Technol, Beijing 100124, Peoples R China
[2] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
[3] Univ Maryland Eastern Shore, Dept Math & Comp Sci, Princess Anne, MD 21853 USA
[4] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[5] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
APPROXIMATION;
D O I
10.1090/mcom/3767
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The transmission eigenvalue problem arises from the inverse scattering theory for inhomogeneous media. It plays a key role in the unique determination of inhomogeneous media. Furthermore, transmission eigenvalues can be reconstructed from the scattering data and used to estimate the material properties of the unknown object. The problem is posted as a system of two second order partial differential equations and is nonlinear and non-selfadjoint. It is challenging to develop effective numerical methods. In this paper, we formulate the transmission eigenvalue problem as the eigenvalue problem of a holomorphic operator function. The Lagrange finite elements are used for the discretization and the convergence is proved using the abstract approximation theory for holomorphic Fredholm operator functions. The spectral indicator method is employed to compute the eigenvalues. Numerical examples are presented to validate the proposed method.
引用
收藏
页码:2517 / 2537
页数:21
相关论文
共 50 条
  • [1] A Holomorphic Operator Function Approach for the Transmission Eigenvalue Problem of Elastic Waves
    Xi, Yingxia
    Ji, Xia
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2022, 32 (02) : 524 - 546
  • [2] An Adaptive Finite Element Method for the Transmission Eigenvalue Problem
    Jiayu Han
    Yidu Yang
    Journal of Scientific Computing, 2016, 69 : 1279 - 1300
  • [3] Nonconforming Finite Element Method for the Transmission Eigenvalue Problem
    Ji, Xia
    Xi, Yingxia
    Xie, Hehu
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2017, 9 (01) : 92 - 103
  • [4] An Adaptive Finite Element Method for the Transmission Eigenvalue Problem
    Han, Jiayu
    Yang, Yidu
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 69 (03) : 1279 - 1300
  • [5] Finite element method for an eigenvalue optimization problem of the Schrodinger operator
    Guo, Shuangbing
    Lu, Xiliang
    Zhang, Zhiyue
    AIMS MATHEMATICS, 2022, 7 (04): : 5049 - 5071
  • [6] AN ADAPTIVE FINITE ELEMENT METHOD FOR THE ELASTIC TRANSMISSION EIGENVALUE PROBLEM
    ZHANG, X. U. Q. I. N. G.
    HAN, J. I. A. Y. U.
    YANG, Y. I. D. U.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022,
  • [7] AN ADAPTIVE FINITE ELEMENT METHOD FOR THE ELASTIC TRANSMISSION EIGENVALUE PROBLEM
    Zhang, Xuqing
    Han, Jiayu
    Yang, Yidu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (02): : 1367 - 1392
  • [8] A Holomorphic Operator Function Approach for the Laplace Eigenvalue Problem Using Discontinuous Galerkin Method
    Xi, Yingxia
    Ji, Xia
    CSIAM TRANSACTIONS ON APPLIED MATHEMATICS, 2021, 2 (04): : 776 - 792
  • [9] An operator method for a numerical quadrature finite element method for a Maxwell-eigenvalue problem
    Hamelinck, Wouter
    Van Keer, Roger
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (14) : 1739 - 1754
  • [10] Convergence of a lowest-order finite element method for the transmission eigenvalue problem
    Camano, Jessika
    Rodriguez, Rodolfo
    Venegas, Pablo
    CALCOLO, 2018, 55 (03)