FINITE ELEMENT/HOLOMORPHIC OPERATOR FUNCTION METHOD FOR THE TRANSMISSION EIGENVALUE PROBLEM

被引:6
|
作者
Gong, Bo [1 ]
Sun, Jiguang [2 ]
Turner, Tiara [3 ]
Zheng, Chunxiong [4 ,5 ]
机构
[1] Beijing Univ Technol, Beijing 100124, Peoples R China
[2] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
[3] Univ Maryland Eastern Shore, Dept Math & Comp Sci, Princess Anne, MD 21853 USA
[4] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[5] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
APPROXIMATION;
D O I
10.1090/mcom/3767
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The transmission eigenvalue problem arises from the inverse scattering theory for inhomogeneous media. It plays a key role in the unique determination of inhomogeneous media. Furthermore, transmission eigenvalues can be reconstructed from the scattering data and used to estimate the material properties of the unknown object. The problem is posted as a system of two second order partial differential equations and is nonlinear and non-selfadjoint. It is challenging to develop effective numerical methods. In this paper, we formulate the transmission eigenvalue problem as the eigenvalue problem of a holomorphic operator function. The Lagrange finite elements are used for the discretization and the convergence is proved using the abstract approximation theory for holomorphic Fredholm operator functions. The spectral indicator method is employed to compute the eigenvalues. Numerical examples are presented to validate the proposed method.
引用
收藏
页码:2517 / 2537
页数:21
相关论文
共 50 条
  • [21] A boundary element method for the Dirichlet eigenvalue problem of the Laplace operator
    O. Steinbach
    G. Unger
    Numerische Mathematik, 2009, 113 : 281 - 298
  • [22] A STABILIZED FINITE ELEMENT METHOD FOR THE STOKES EIGENVALUE PROBLEM
    Yuan, Maoqin
    Huang, Pengzhan
    MATHEMATICAL REPORTS, 2024, 26 (01): : 1 - 16
  • [23] ADAPTIVE FINITE ELEMENT METHOD FOR THE MAXWELL EIGENVALUE PROBLEM
    Boffi, Daniele
    Gastaldi, Lucia
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (01) : 478 - 494
  • [24] Superconvergence of the finite element method for the Stokes eigenvalue problem
    Sheng, Ying
    Zhang, Tie
    Pan, Zixing
    CHAOS SOLITONS & FRACTALS, 2021, 144
  • [25] A new multigrid finite element method for the transmission eigenvalue problems
    Han, Jiayu
    Yang, Yidu
    Bi, Hai
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 292 : 96 - 106
  • [26] Local and Parallel Finite Element Schemes for the Elastic Transmission Eigenvalue Problem
    Bi, Hai
    Han, Jiayu
    Yang, Yidu
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2021, 11 (04) : 829 - 858
  • [27] Non-conforming finite element methods for transmission eigenvalue problem
    Yang, Yidu
    Han, Jiayu
    Bi, Hai
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 307 : 144 - 163
  • [28] Local and parallel finite element method for Laplace eigenvalue problem
    Tang, Geng
    Yang, Yidu
    Li, Hao
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2014, 52 (08): : 97 - 106
  • [29] A Type of Cascadic Adaptive Finite Element Method for Eigenvalue Problem
    Xu, Fei
    Huang, Qiumei
    Chen, Shuangshuang
    Ma, Hongkun
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2020, 12 (03) : 774 - 796
  • [30] Multiresolutional techniques in finite element method solution of eigenvalue problem
    Kaminski, M
    COMPUTATIONAL SCIENCE - ICCS 2004, PT 2, PROCEEDINGS, 2004, 3037 : 171 - 178