Renormalization group analysis of the anisotropic nonlocal Kardar-Parisi-Zhang equation with spatially correlated noise

被引:5
|
作者
Jung, Y [1 ]
Park, K [1 ]
Kim, HJ [1 ]
Kim, IM [1 ]
机构
[1] Korea Univ, Dept Phys, Seoul 136701, South Korea
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 02期
关键词
D O I
10.1103/PhysRevE.62.1893
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study an anisotropic nonlocal Kardar-Parisi-Zhang (KPZ) equation with spatially correlated noise by using the dynamic renormalization group method. When the signs of nonlinear terms in parallel and perpendicular directions are opposite, the correlated noise coupled with the long ranged nature of interaction produces a stable non-KPZ fixed point for d<d(c). For the uncorrelated noise, the roughness and dynamic exponents associated with the stable fixed point are different from those of the isotropic nonlocal KPZ equation, while for the correlated noise the exponents are the same as those of the isotropic case.
引用
收藏
页码:1893 / 1896
页数:4
相关论文
共 50 条
  • [41] Pseudospectral method for the Kardar-Parisi-Zhang equation
    Giada, L
    Giacometti, A
    Rossi, M
    [J]. PHYSICAL REVIEW E, 2002, 65 (03):
  • [42] Improved discretization of the Kardar-Parisi-Zhang equation
    Lam, CH
    Shin, FG
    [J]. PHYSICAL REVIEW E, 1998, 58 (05): : 5592 - 5595
  • [43] Kardar-Parisi-Zhang equation and the delta expansion
    Paul, I
    Tewari, S
    Bhattacharjee, JK
    [J]. PHYSICAL REVIEW E, 1997, 55 (03) : R2097 - R2099
  • [44] Numerical study of the Kardar-Parisi-Zhang equation
    Miranda, Vladimir G.
    Reis, Fabio D. A. Aarao
    [J]. PHYSICAL REVIEW E, 2008, 77 (03):
  • [45] THE KARDAR-PARISI-ZHANG EQUATION AND UNIVERSALITY CLASS
    Quastel, J. D.
    [J]. XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 113 - 133
  • [46] Random noise term effect on discretized Kardar-Parisi-Zhang equation
    Sayfidinov, Okhunjon
    Bognar, Gabriella
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [47] Self-consistent expansion results for the nonlocal Kardar-Parisi-Zhang equation
    Katzav, E
    [J]. PHYSICAL REVIEW E, 2003, 68 (04): : 461131 - 461138
  • [48] Comment on "Dynamic renormalization group approach to the Kardar-Parisi-Zhang equation and its results derived" - Reply
    Honda, K
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (02) : 699 - 699
  • [49] Fragility of Kardar-Parisi-Zhang universality class in the presence of temporally correlated noise
    Rodriguez-Fernandez, Enrique
    Ales, Alejandro
    Martin-alvarez, Jorge
    Lopez, Juan M.
    [J]. PHYSICAL REVIEW E, 2024, 110 (02)
  • [50] Universality classes in the anisotropic Kardar-Parisi-Zhang model
    Täuber, UC
    Frey, E
    [J]. EUROPHYSICS LETTERS, 2002, 59 (05): : 655 - 661