Renormalization group analysis of the anisotropic nonlocal Kardar-Parisi-Zhang equation with spatially correlated noise

被引:5
|
作者
Jung, Y [1 ]
Park, K [1 ]
Kim, HJ [1 ]
Kim, IM [1 ]
机构
[1] Korea Univ, Dept Phys, Seoul 136701, South Korea
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 02期
关键词
D O I
10.1103/PhysRevE.62.1893
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study an anisotropic nonlocal Kardar-Parisi-Zhang (KPZ) equation with spatially correlated noise by using the dynamic renormalization group method. When the signs of nonlinear terms in parallel and perpendicular directions are opposite, the correlated noise coupled with the long ranged nature of interaction produces a stable non-KPZ fixed point for d<d(c). For the uncorrelated noise, the roughness and dynamic exponents associated with the stable fixed point are different from those of the isotropic nonlocal KPZ equation, while for the correlated noise the exponents are the same as those of the isotropic case.
引用
收藏
页码:1893 / 1896
页数:4
相关论文
共 50 条
  • [31] FIELD-THEORY RENORMALIZATION APPROACH TO THE KARDAR-PARISI-ZHANG EQUATION
    SUN, T
    PLISCHKE, M
    [J]. PHYSICAL REVIEW E, 1994, 49 (06): : 5046 - 5057
  • [33] Generalized discretization of the Kardar-Parisi-Zhang equation
    Buceta, RC
    [J]. PHYSICAL REVIEW E, 2005, 72 (01):
  • [34] Universality classes of the Kardar-Parisi-Zhang equation
    Canet, L.
    Moore, M. A.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (20)
  • [35] Comment on "Dynamic renormalization group approach to the Kardar-Parisi-Zhang equation and its results derived"
    Shiwa, Y
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (02) : 698 - 698
  • [36] THE KARDAR-PARISI-ZHANG EQUATION AND UNIVERSALITY CLASS
    Corwin, Ivan
    [J]. RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (01)
  • [37] Nonperturbative renormalization of the Kardar-Parisi-Zhang growth dynamics
    Castellano, C
    Marsili, M
    Pietronero, L
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (16) : 3527 - 3530
  • [38] Phenomenology of aging in the Kardar-Parisi-Zhang equation
    Henkel, Malte
    Noh, Jae Dong
    Pleimling, Michel
    [J]. PHYSICAL REVIEW E, 2012, 85 (03):
  • [39] GLASSY SOLUTIONS OF THE KARDAR-PARISI-ZHANG EQUATION
    MOORE, MA
    BLUM, T
    DOHERTY, JP
    MARSILI, M
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (21) : 4257 - 4260
  • [40] Strong-coupling phases of the anisotropic Kardar-Parisi-Zhang equation
    Kloss, Thomas
    Canet, Leonie
    Wschebor, Nicolas
    [J]. PHYSICAL REVIEW E, 2014, 90 (06):