Generalized area operators on Hardy spaces

被引:31
|
作者
Cohn, WS [1 ]
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
关键词
D O I
10.1006/jmaa.1997.5663
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that if 0 < p < infinity then the operator Gf(zeta) = integral(Gamma(zeta))\f(z)\d mu/(1 - \z\) maps the Hardy space H-p to L-p(\d zeta\) if and only if mu is a Carleson measure. Here Gamma(zeta) is the usual nontangential approach region with vertex zeta on the unit circle Gamma(zeta) = {z <epsi is an element of D:\1 - z\ less than or equal to 1 - \z\(2)}, and \d zeta\ is arclength measure on the circle. We also show that if 0 < p less than or equal to 1, beta > 0, and 1 - beta p > 0 then the operator Gf maps the Hardy-Sobolev space H-beta(p) into L-p(\d zeta\) if and only if the function G(mu)(zeta) = integral(Gamma(zeta))d mu/(1 - \z\) belongs to the Morrey space L-p,L-1-beta p. In case p = 1, this condition is equivalent to the condition that mu(T(I)) less than or equal to C\I\(1-beta) for all arcs I contained in the circle, where T(I) is the tent over I contained in the unit disk. (C) 1997 Academic Press.
引用
收藏
页码:112 / 121
页数:10
相关论文
共 50 条
  • [31] Generalized composition operators between Hardy and weighted Bergman spaces
    Sharma, Ajay K.
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 2012, 78 (1-2): : 187 - 211
  • [32] Generalized composition operators between Hardy and weighted Bergman spaces
    Ajay K. Sharma
    [J]. Acta Scientiarum Mathematicarum, 2012, 78 (1-2): : 187 - 211
  • [33] GENERALIZED HARDY-CESARO OPERATORS BETWEEN WEIGHTED SPACES
    Pedersen, Thomas Vils
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2019, 61 (01) : 13 - 24
  • [34] Weighted Hardy operators in the local generalized vanishing Morrey spaces
    Natasha Samko
    [J]. Positivity, 2013, 17 : 683 - 706
  • [35] ON MODULAR INEQUALITIES FOR GENERALIZED HARDY OPERATORS ON WEIGHTED ORLICZ SPACES
    Mohammad, Kh A.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2021, 12 (03): : 19 - 28
  • [36] On generalized Hardy spaces associated with singular partial differential operators
    Ghandouri, A.
    Mejjaoli, H.
    Omri, S.
    [J]. CUBO-A MATHEMATICAL JOURNAL, 2023, 25 (02): : 289 - 320
  • [37] Generalized integration operators from Hardy spaces to Zygmund-type spaces
    Qu, Huiying
    Liu, Yongmin
    Cheng, Shulei
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (06) : 1004 - 1016
  • [38] Fredholmness of Toeplitz operators on generalized Hardy spaces over the polydisc
    Beyaz Basak Koca
    [J]. Archiv der Mathematik, 2016, 107 : 265 - 270
  • [39] Generalized fractional integral operators on Orlicz-Hardy spaces
    Arai, Ryutaro
    Nakai, Eiichi
    Sawano, Yoshihiro
    [J]. MATHEMATISCHE NACHRICHTEN, 2021, 294 (02) : 224 - 235
  • [40] Product Hardy Operators on Hardy Spaces
    Fan, Dashan
    Zhao, Fayou
    [J]. TOKYO JOURNAL OF MATHEMATICS, 2015, 38 (01) : 193 - 209