Generalized integration operators from Hardy spaces to Zygmund-type spaces

被引:0
|
作者
Qu, Huiying [1 ]
Liu, Yongmin [1 ]
Cheng, Shulei [1 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R China
关键词
Hardy space; Zygmund-type space; generalized integration operator; BLOCH-TYPE SPACES; PRODUCTS; DIFFERENTIATION; F(P;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let H(D) denote the space of all holomorphic functions on the unit disk D of C. Let co be a holomorphic self-map of D, n be a positive integer and g E H(1D). In this paper, we investigate the boundedness and compactness of a generalized integration operator i(g,phi)((n)) = integral(z)(0) f((n)) (phi(zeta))g(zeta)d(zeta) from Hardy spaces to the Zygmund-type spaces Z(mu).
引用
收藏
页码:1004 / 1016
页数:13
相关论文
共 50 条