Generalized Integration Operators from Mixed-Norm to Zygmund-Type Spaces

被引:5
|
作者
Guo, Jian [1 ]
Liu, Yongmin [2 ]
机构
[1] Jiangsu Bldg Vocat & Tech Coll, Xuzhou 221116, Peoples R China
[2] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R China
关键词
Boundedness; Compactness; Generalized integration operators; Mixed-norm space; Zygmund-type space; BLOCH-TYPE SPACES; BERGMAN-TYPE SPACES; UNIT BALL; H-INFINITY; ANALYTIC-FUNCTIONS; HARDY-SPACES; S) SPACES; PRODUCTS; DIFFERENTIATION; POLYDISK;
D O I
10.1007/s40840-015-0204-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi be an analytic self-map of the unit disk D, H(D) the space of analytic functions on D, and g is an element of H( D). The boundedness and compactness of the generalized integration operator I-q,phi((n)) f (z) = integral(Z)(0) f(n) (phi(xi)g(xi)d xi, z is an element of D, from mixed-norm space to the Zygmund-type space, and the little Zygmund-type space are investigated in this article.
引用
收藏
页码:1043 / 1057
页数:15
相关论文
共 50 条