OPTIMAL COORDINATION OF MOBILE SENSOR NETWORKS USING GAUSSIAN PROCESSES

被引:0
|
作者
Xu, Yunfei [1 ]
Choi, Jongeun [1 ]
机构
[1] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce a family of spatio-temporal Gaussian processes specified by a class of covariance functions. Nonparametric prediction based on truncated observations is proposed for mobile sensor networks with limited memory and computational power We show that there is a trade-off between precision and efficiency when prediction based on truncated observations is used. Next, we propose both centralized and distributed navigation strategies for mobile sensor networks to move in order to reduce prediction error variances at positions of interest. Simulation results demonstrate the effectiveness of the proposed schemes.
引用
收藏
页码:1347 / 1354
页数:8
相关论文
共 50 条
  • [1] Explorative Navigation of Mobile Sensor Networks Using Sparse Gaussian Processes
    Oh, Songhwai
    Xu, Yunfei
    Choi, Jongeun
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 3851 - 3856
  • [2] Adaptive Sampling for Learning Gaussian Processes Using Mobile Sensor Networks
    Xu, Yunfei
    Choi, Jongeun
    SENSORS, 2011, 11 (03) : 3051 - 3066
  • [3] Mobile Sensor Networks for Learning Anisotropic Gaussian Processes
    Xu, Yunfei
    Choi, Jongeun
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 5049 - 5054
  • [4] Spatial prediction with mobile sensor networks using Gaussian processes with built-in Gaussian Markov random fields
    Xu, Yunfei
    Choi, Jongeun
    AUTOMATICA, 2012, 48 (08) : 1735 - 1740
  • [5] A Distributed Policy Gradient Algorithm for Optimal Coordination of Mobile Sensor Networks
    Wang, Jing
    Khanh Pham
    2022 IEEE SENSORS, 2022,
  • [6] Mobile Sensor Network Navigation Using Gaussian Processes With Truncated Observations
    Xu, Yunfei
    Choi, Jongeun
    Oh, Songhwai
    IEEE TRANSACTIONS ON ROBOTICS, 2011, 27 (06) : 1118 - 1131
  • [7] Weak Constraint Gaussian Processes for optimal sensor placement
    Dur, Tolga Hasan
    Arcucci, Rossella
    Mottet, Laetitia
    Molina Solana, Miguel
    Pain, Christopher
    Guo, Yi-Ke
    JOURNAL OF COMPUTATIONAL SCIENCE, 2020, 42
  • [8] Spatial Gaussian Process Regression With Mobile Sensor Networks
    Gu, Dongbing
    Hu, Huosheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (08) : 1279 - 1290
  • [9] Robust Optimal Deployment of Mobile Sensor Networks
    Hutchinson, Seth
    Bretl, Timothy
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 671 - 676
  • [10] SPATIAL PREDICTION WITH MOBILE SENSOR NETWORKS USING GAUSSIAN PROCESS REGRESSION BASED ON GAUSSIAN MARKOV RANDOM FIELDS
    Xu, Yunfei
    Choi, Jongeun
    PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE AND BATH/ASME SYMPOSIUM ON FLUID POWER AND MOTION CONTROL (DSCC 2011), VOL 2, 2012, : 173 - 180