Weak Constraint Gaussian Processes for optimal sensor placement

被引:7
|
作者
Dur, Tolga Hasan [1 ]
Arcucci, Rossella [1 ]
Mottet, Laetitia [2 ]
Molina Solana, Miguel [1 ,3 ]
Pain, Christopher [2 ]
Guo, Yi-Ke [1 ]
机构
[1] Imperial Coll London, Data Sci Inst, Dept Comp, London, England
[2] Imperial Coll London, Dept Earth Sci & Engn, London, England
[3] Univ Granada, Dept Comp Sci & AI, Granada, Spain
基金
英国工程与自然科学研究理事会;
关键词
Gaussian Processes; Sensor placement; Data assimilation; Parallel algorithms; Big data; REDUCED-ORDER MODEL;
D O I
10.1016/j.jocs.2020.101110
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a Weak Constraint Gaussian Process (WCGP) model to integrate noisy inputs into the classical Gaussian Process (GP) predictive distribution. This model follows a Data Assimilation approach (i.e. by considering information provided by observed values of a noisy input in a time window). Due to the increased number of states processed from real applications and the time complexity of GP algorithms, the problem mandates a solution in a high performance computing environment. In this paper, parallelism is explored by defining the parallel WCGP model based on domain decomposition. Both a mathematical formulation of the model and a parallel algorithm are provided. We use the algorithm for an optimal sensor placement problem. Experimental results are provided for pollutant dispersion within a real urban environment. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Scalable Weak Constraint Gaussian Processes
    Arcucci, Rossella
    Mcllwraith, Douglas
    Guo, Yi-Ke
    [J]. COMPUTATIONAL SCIENCE - ICCS 2019, PT IV, 2019, 11539 : 111 - 125
  • [2] Variational Gaussian Process for Optimal Sensor Placement
    Gabor Tajnafoi
    Rossella Arcucci
    Laetitia Mottet
    Carolanne Vouriot
    Miguel Molina-Solana
    Christopher Pain
    Yi-Ke Guo
    [J]. Applications of Mathematics, 2021, 66 : 287 - 317
  • [3] Optimal sensor placement via Gaussian quadrature
    Miller, Robert E.
    [J]. Applied Mathematics and Computation (New York), 1998, 97 (01): : 71 - 97
  • [4] Optimal sensor placement via Gaussian quadrature
    Miller, RE
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1998, 97 (01) : 71 - 97
  • [5] Variational Gaussian Process for Optimal Sensor Placement
    Tajnafoi, Gabor
    Arcucci, Rossella
    Mottet, Laetitia
    Vouriot, Carolanne
    Molina-Solana, Miguel
    Pain, Christopher
    Guo, Yi-Ke
    [J]. APPLICATIONS OF MATHEMATICS, 2021, 66 (02) : 287 - 317
  • [6] Gaussian Process As a Benchmark for Optimal Sensor Placement Strategy
    Ulapane, Nalika
    Thiyagarajan, Karthick
    Kodagoda, Sarath
    [J]. 2021 IEEE SENSORS, 2021,
  • [7] Environmental sensor placement with convolutional Gaussian neural processes
    Andersson, Tom R.
    Bruinsma, Wessel P.
    Markou, Stratis
    Requeima, James
    Coca-Castro, Alejandro
    Vaughan, Anna
    Ellis, Anna-Louise
    Lazzara, Matthew A.
    Jones, Dani
    Hosking, Scott
    Turner, Richard E.
    [J]. ENVIRONMENTAL DATA SCIENCE, 2023, 2
  • [8] Sensor Placement for Spatial Gaussian Processes with Integral Observations
    Longi, Krista
    Rajani, Chang
    Sillanpaa, Tom
    Makinen, Joni
    Rauhala, Timo
    Salmi, Ari
    Haeggstrom, Edward
    Klami, Arto
    [J]. CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI 2020), 2020, 124 : 1009 - 1018
  • [9] OPTIMAL COORDINATION OF MOBILE SENSOR NETWORKS USING GAUSSIAN PROCESSES
    Xu, Yunfei
    Choi, Jongeun
    [J]. PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE 2009, PTS A AND B, 2010, : 1347 - 1354
  • [10] Optimal Sensor Placement for RSS-based Localization using Gaussian Process
    Yoo, Jaehyun
    Kim, H. Jin
    [J]. 2014 IEEE 4TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2014, : 204 - 209