Sensor Placement for Spatial Gaussian Processes with Integral Observations

被引:0
|
作者
Longi, Krista [1 ]
Rajani, Chang [1 ]
Sillanpaa, Tom [2 ]
Makinen, Joni [2 ]
Rauhala, Timo [3 ]
Salmi, Ari [2 ]
Haeggstrom, Edward [2 ]
Klami, Arto [1 ]
机构
[1] Univ Helsinki, Dept Comp Sci, Helsinki, Finland
[2] Univ Helsinki, Dept Phys, Elect Res Lab, Helsinki, Finland
[3] Altum Technol, Helsinki, Finland
基金
芬兰科学院;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gaussian processes (GP) are a natural tool for estimating unknown functions, typically based on a collection of point-wise observations. Interestingly, the GP formalism can be used also with observations that are integrals of the unknown function along some known trajectories, which makes GPs a promising technique for inverse problems in a wide range of physical sensing problems. However, in many real world applications collecting data is laborious and time consuming. We provide tools for optimizing sensor locations for GPs using integral observations, extending both model-based and geometric strategies for GP sensor placement. We demonstrate the techniques in ultrasonic detection of fouling in closed pipes.
引用
收藏
页码:1009 / 1018
页数:10
相关论文
共 50 条
  • [1] Locational Optimization based Sensor Placement for Monitoring Gaussian Processes Modeled Spatial Phenomena
    Linh Van Nguyen
    Kodagoda, Sarath
    Ranasinghe, Ravindra
    Dissanayake, Gamini
    [J]. PROCEEDINGS OF THE 2013 IEEE 8TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2013, : 1706 - 1711
  • [2] NON-LINEARITIES IN GAUSSIAN PROCESSES WITH INTEGRAL OBSERVATIONS
    Tanskanen, Ville
    Longi, Krista
    Klami, Arto
    [J]. PROCEEDINGS OF THE 2020 IEEE 30TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2020,
  • [3] Weak Constraint Gaussian Processes for optimal sensor placement
    Dur, Tolga Hasan
    Arcucci, Rossella
    Mottet, Laetitia
    Molina Solana, Miguel
    Pain, Christopher
    Guo, Yi-Ke
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2020, 42
  • [4] Environmental sensor placement with convolutional Gaussian neural processes
    Andersson, Tom R.
    Bruinsma, Wessel P.
    Markou, Stratis
    Requeima, James
    Coca-Castro, Alejandro
    Vaughan, Anna
    Ellis, Anna-Louise
    Lazzara, Matthew A.
    Jones, Dani
    Hosking, Scott
    Turner, Richard E.
    [J]. ENVIRONMENTAL DATA SCIENCE, 2023, 2
  • [5] Mobile Sensor Network Navigation Using Gaussian Processes With Truncated Observations
    Xu, Yunfei
    Choi, Jongeun
    Oh, Songhwai
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2011, 27 (06) : 1118 - 1131
  • [7] Optimal sensor placement via Gaussian quadrature
    Miller, RE
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1998, 97 (01) : 71 - 97
  • [8] Variational Gaussian Process for Optimal Sensor Placement
    Gabor Tajnafoi
    Rossella Arcucci
    Laetitia Mottet
    Carolanne Vouriot
    Miguel Molina-Solana
    Christopher Pain
    Yi-Ke Guo
    [J]. Applications of Mathematics, 2021, 66 : 287 - 317
  • [9] Optimal sensor placement via Gaussian quadrature
    Miller, Robert E.
    [J]. Applied Mathematics and Computation (New York), 1998, 97 (01): : 71 - 97
  • [10] Variational Gaussian Process for Optimal Sensor Placement
    Tajnafoi, Gabor
    Arcucci, Rossella
    Mottet, Laetitia
    Vouriot, Carolanne
    Molina-Solana, Miguel
    Pain, Christopher
    Guo, Yi-Ke
    [J]. APPLICATIONS OF MATHEMATICS, 2021, 66 (02) : 287 - 317