CatBoost model and artificial intelligence techniques for corporate failure prediction

被引:136
|
作者
Ben Jabeur, Sami [1 ]
Gharib, Cheima [2 ]
Mefteh-Wali, Salma [3 ]
Ben Arfi, Wissal [4 ]
机构
[1] ESDES Business Sch UCLyon, Sci & Humanities Confluence Res Ctr, 10 Pl Arch, F-69002 Lyon, France
[2] Manouba Univ, High Inst Commerce Tunis, Manouba, Tunisia
[3] ESSCA Sch Management, 1 Rue Lakanal, F-49003 Angers, France
[4] EDC Paris Business Sch, Observ & Res Ctr Entrepreneurship OCRE, Dept Entrepreneurship & Digital Transformat, 70 Galerie Damiers Paris Def 1, F-92415 Courbevoie, France
关键词
Bankruptcy prediction; CatBoost; XGBoost; Machine learning; DEEP NEURAL-NETWORKS; BANKRUPTCY PREDICTION; FINANCIAL RATIOS; DISCRIMINANT-ANALYSIS; LEARNING-MODELS; DISTRESS; SELECTION; SUPPORT; OPTIMIZATION; ALGORITHMS;
D O I
10.1016/j.techfore.2021.120658
中图分类号
F [经济];
学科分类号
02 ;
摘要
Financial distress prediction provides an effective warning system for banks and investors to correctly guide decisions on granting credit. Ensemble methods have demonstrated their performance in corporate failure prediction. Among the ensemble methods, gradient boosting has been successfully used in bankruptcy prediction. In this paper, we propose a novel approach to classify categorical data using gradient boosting decision trees, namely, CatBoost. First, we investigate the importance of the features identified by the CatBoost model. Second, we compare our approach with eight reference machine learning models at one, two and three years before failure. Our model demonstrates an effective improvement in the power of classification performance compared with other advanced approaches.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Prediction of heart failure decompensations using artificial intelligence techniques
    Escolar Perez, V. Vanessa
    Lozano, A.
    Larburu, N.
    Kerexeta, J.
    Artetxe, A.
    Artola, G.
    Alvarez, R.
    Juez, B.
    Echebarria, A.
    Azcona, A.
    [J]. EUROPEAN JOURNAL OF HEART FAILURE, 2019, 21 : 220 - 220
  • [2] Prediction of Thermodynamic Properties by Artificial Intelligence Techniques
    Anghel, Calin I.
    Cristea, Mircea V.
    [J]. REVISTA DE CHIMIE, 2010, 61 (01): : 87 - 93
  • [3] Artificial intelligence techniques for financial distress prediction
    Zhong, Junhao
    Wang, Zhenzhen
    [J]. AIMS MATHEMATICS, 2022, 7 (12): : 20891 - 20908
  • [4] Streamflow Prediction Based on Artificial Intelligence Techniques
    Sarita Gajbhiye Meshram
    Chandrashekhar Meshram
    Celso Augusto Guimarães Santos
    Brahim Benzougagh
    Khaled Mohamed Khedher
    [J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2022, 46 : 2393 - 2403
  • [5] Streamflow Prediction Based on Artificial Intelligence Techniques
    Meshram, Sarita Gajbhiye
    Meshram, Chandrashekhar
    Santos, Celso Augusto Guimaraes
    Benzougagh, Brahim
    Khedher, Khaled Mohamed
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2022, 46 (03) : 2393 - 2403
  • [6] Comparison of artificial intelligence techniques to failure prediction in contaminated insulators based on leakage current
    Medeiros, Alessandro
    Sartori, Andreza
    Stefenon, Stefano Frizzo
    Meyer, Luiz Henrique
    Nied, Ademir
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (04) : 3285 - 3298
  • [7] Artificial intelligence assisted fatigue failure prediction
    Schneller, W.
    Leitner, M.
    Maier, B.
    Gruen, F.
    Jantschner, O.
    Leuders, S.
    Pfeifer, T.
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2022, 155
  • [8] Validation of electrocardiographic artificial intelligence model for outcome prediction in patients with heart failure
    Cho, Y.
    Yoon, M.
    Kim, J.
    Lee, J. H.
    Oh, I. Y.
    Park, J. J.
    Lee, C. J.
    Kang, S. M.
    Choi, D. J.
    [J]. EUROPEAN HEART JOURNAL, 2023, 44
  • [9] ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure
    Akbilgic, Oguz
    Butler, Liam
    Karabayir, Ibrahim
    Chang, Patricia P.
    Kitzman, Dalane W.
    Alonso, Alvaro
    Chen, Lin Y.
    Soliman, Elsayed Z.
    [J]. EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2021, 2 (04): : 626 - 634
  • [10] Improvement of a prediction model for heart failure survival through explainable artificial intelligence
    Moreno-Sanchez, Pedro A.
    [J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2023, 10