共 50 条
ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure
被引:40
|作者:
Akbilgic, Oguz
[1
,2
,3
]
Butler, Liam
[1
]
Karabayir, Ibrahim
[1
,4
]
Chang, Patricia P.
[2
,3
]
Kitzman, Dalane W.
[2
,3
]
Alonso, Alvaro
[5
]
Chen, Lin Y.
[6
]
Soliman, Elsayed Z.
[2
,3
,7
]
机构:
[1] Loyola Univ Chicago, Parkinson Sch Hlth Sci & Publ Hlth, Dept Hlth Informat & Data Sci, 2160 S 1st St, Maywood, IL 60153 USA
[2] Wake Forest Sch Med, Dept Internal Med, Sect Cardiovasc Med, 475 Vine St, Winston Salem, NC 27101 USA
[3] Wake Forest Sch Med, Dept Internal Med, Sect Geriatr, 475 Vine St, Winston Salem, NC 27101 USA
[4] Kirklareli Univ, Dept Econometr, 3 Kayali Kampusu Kofcaz, Kirklareli, Turkiye
[5] Emory Univ, Rollins Sch Publ Hlth, Dept Epidemiol, 1518 Clifton Rd NE, Atlanta, GA 30322 USA
[6] Univ Minnesota, Dept Med, Cardiovasc Div, Med Sch, 401 East River Pkwy, Minneapolis, MN 55455 USA
[7] Wake Forest Sch Med, Internal Med Epidemiol Cardiol Res Ctr, Sect Cardiovasc Med, 525 Vine St, Winston Salem, NC 27101 USA
来源:
基金:
美国国家卫生研究院;
关键词:
Heart failure;
ECG;
Electrocardiogram;
Deep learning;
Artificial intelligence;
ARIC;
SYMBOLIC PATTERN-RECOGNITION;
BUNDLE-BRANCH BLOCKS;
ATHEROSCLEROSIS RISK;
WOMEN FREE;
OUTCOMES;
MEN;
D O I:
10.1093/ehjdh/ztab080
中图分类号:
R5 [内科学];
学科分类号:
1002 ;
100201 ;
摘要:
Aims Heart failure (HF) is a leading cause of death. Early intervention is the key to reduce HF-related morbidity and mortality. This study assesses the utility of electrocardiograms (ECGs) in HF risk prediction. Methods and results Data from the baseline visits (1987-89) of the Atherosclerosis Risk in Communities (ARIC) study was used. Incident hospitalized HF events were ascertained by ICD codes. Participants with good quality baseline ECGs were included. Participants with prevalent HF were excluded. ECG-artificial intelligence (AI) model to predict HF was created as a deep residual convolutional neural network (CNN) utilizing standard 12-lead ECG. The area under the receiver operating characteristic curve (AUC) was used to evaluate prediction models including (CNN), light gradient boosting machines (LGBM), and Cox proportional hazards regression. A total of 14 613 (45% male, 73% of white, mean age +/- standard deviation of 54 +/- 5) participants were eligible. A total of 803 (5.5%) participants developed HF within 10 years from baseline. Convolutional neural network utilizing solely ECG achieved an AUC of 0.756 (0.717-0.795) on the hold-out test data. ARIC and Framingham Heart Study (FHS) HF risk calculators yielded AUC of 0.802 (0.750-0.850) and 0.780 (0.740-0.830). The highest AUC of 0.818 (0.778-0.859) was obtained when ECG-AI model output, age, gender, race, body mass index, smoking status, prevalent coronary heart disease, diabetes mellitus, systolic blood pressure, and heart rate were used as predictors of HF within LGBM. The ECG-AI model output was the most important predictor of HF. Conclusions ECG-AI model based solely on information extracted from ECG independently predicts HF with accuracy comparable to existing FHS and ARIC risk calculators. [GRAPHICS] .
引用
收藏
页码:626 / 634
页数:9
相关论文