Artificial intelligence assisted fatigue failure prediction

被引:13
|
作者
Schneller, W. [1 ]
Leitner, M. [2 ]
Maier, B. [1 ]
Gruen, F. [1 ]
Jantschner, O. [3 ]
Leuders, S. [4 ]
Pfeifer, T. [5 ]
机构
[1] Univ Leoben, Dept Prod Engn, Chair Mech Engn, Franz Josef Str 18, A-8700 Leoben, Austria
[2] Graz Univ Technol, Inst Betriebsfestigkeit & Schienenfahrzeugtech, Inffeldgasse 25-D, A-8010 Graz, Austria
[3] Andritz AG, Statteggerstr 18, A-8045 Graz, Austria
[4] Voestalpine Addit Mfg Ctr GmbH, Hansaallee 321, D-40549 Dusseldorf, Germany
[5] Pankl Syst Austria GmbH, Ind Str West 4, A-8605 Kapfenberg, Austria
关键词
Fatigue; Artificial intelligence; Tensorflow; Keras; STRENGTH;
D O I
10.1016/j.ijfatigue.2021.106580
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This work presents a novel approach for defect based fatigue failure characterization using artificial intelligence (AI). An artificial neural network (ANN) is trained on experimentally determined data that is highly relevant in terms of fatigue. Load stress, hardness and killer defect size are the three main parameters defined as input arguments. Fatigue testing either reveals failure or non-failure, which represent the two possible output variables. Thus, every specimen subjected to this research work generates at least one data set. After total fracture occurs at a certain load level, killer defect size is evaluated by fracture surface analysis. The architecture as well as hyperparameters of the neural network are optimized by K-fold cross validation in order to obtain best prediction accuracy. Eventually, a conservative mean fatigue failure prediction accuracy of 91.6% is achieved. This unprecedented methodology is pioneering to predict fatigue failure without the need for extensive, error-prone, use of complex assessment methodologies and associated comprehensive expensive material testing. Without any expert-knowledge of evaluation procedures, developed AI-approach enables quick and reliable prediction of fatigue failure of machined components based on elementary key figures and shows prospective ways to revolutionize fatigue characterization.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] CatBoost model and artificial intelligence techniques for corporate failure prediction
    Ben Jabeur, Sami
    Gharib, Cheima
    Mefteh-Wali, Salma
    Ben Arfi, Wissal
    [J]. TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2021, 166 (166)
  • [2] Failure prediction using artificial intelligence for heavy duty equipment
    Kumar, Prakash
    [J]. MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 3154 - 3161
  • [3] Prediction of heart failure decompensations using artificial intelligence techniques
    Escolar Perez, V. Vanessa
    Lozano, A.
    Larburu, N.
    Kerexeta, J.
    Artetxe, A.
    Artola, G.
    Alvarez, R.
    Juez, B.
    Echebarria, A.
    Azcona, A.
    [J]. EUROPEAN JOURNAL OF HEART FAILURE, 2019, 21 : 220 - 220
  • [4] Artificial Intelligence Prediction of Rutting and Fatigue Parameters in Modified Asphalt Binders
    Uwanuakwa, Ikenna D.
    Ali, Shaban Ismael Albrka
    Hasan, Mohd Rosli Mohd
    Akpinar, Pinar
    Sani, Ashiru
    Shariff, Khairul Anuar
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (21): : 1 - 17
  • [5] ARTIFICIAL INTELLIGENCE APPLIED TO ECG IMPROVES HEART FAILURE PREDICTION ACCURACY
    Akbilgic, Oguz
    Butler, Liam
    Karabayir, Ibrahim
    Chang, Patricia
    Kitzman, Dalane
    Alonso, Alvaro
    Chen, Lin
    Soliman, Elsayed
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 77 (18) : 3045 - 3045
  • [6] THE FAILURE OF INTELLIGENCE PREDICTION
    WASSERMAN, B
    [J]. POLITICAL STUDIES, 1960, 8 (02) : 156 - 169
  • [7] Estimating diagnostic uncertainty in artificial intelligence assisted pathology using conformal prediction
    Henrik Olsson
    Kimmo Kartasalo
    Nita Mulliqi
    Marco Capuccini
    Pekka Ruusuvuori
    Hemamali Samaratunga
    Brett Delahunt
    Cecilia Lindskog
    Emiel A. M. Janssen
    Anders Blilie
    Lars Egevad
    Ola Spjuth
    Martin Eklund
    [J]. Nature Communications, 13
  • [8] Estimating diagnostic uncertainty in artificial intelligence assisted pathology using conformal prediction
    Olsson, Henrik
    Kartasalo, Kimmo
    Mulliqi, Nita
    Capuccini, Marco
    Ruusuvuori, Pekka
    Samaratunga, Hemamali
    Delahunt, Brett
    Lindskog, Cecilia
    Janssen, Emiel A. M.
    Blilie, Anders
    Egevad, Lars
    Spjuth, Ola
    Eklund, Martin
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [9] Artificial intelligence in sports prediction
    McCabe, Alan
    Trevathan, Jarrod
    [J]. PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, 2008, : 1194 - +
  • [10] Prediction and Validation of Fatigue loads using Artificial Intelligence on Real World Measurement Data
    Venu, Anish
    Luedde, Mike
    Omole, John
    [J]. SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2020), PTS 1-5, 2020, 1618