Estimating diagnostic uncertainty in artificial intelligence assisted pathology using conformal prediction

被引:25
|
作者
Olsson, Henrik [1 ]
Kartasalo, Kimmo [1 ]
Mulliqi, Nita [1 ]
Capuccini, Marco [2 ]
Ruusuvuori, Pekka [3 ,4 ]
Samaratunga, Hemamali [5 ,6 ]
Delahunt, Brett [7 ]
Lindskog, Cecilia [8 ]
Janssen, Emiel A. M. [9 ,10 ]
Blilie, Anders [9 ,10 ]
Egevad, Lars [11 ]
Spjuth, Ola [2 ]
Eklund, Martin [1 ]
机构
[1] Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden
[2] Uppsala Univ, Dept Pharmaceut Biosci, Uppsala, Sweden
[3] Univ Turku, Inst Biomed, Turku, Finland
[4] Tampere Univ, Fac Med & Hlth Technol, Tampere, Finland
[5] Aquesta Uropathol, Brisbane, Qld, Australia
[6] Univ Queensland, Brisbane, Qld, Australia
[7] Univ Otago, Wellington Sch Med & Hlth Sci, Dept Pathol & Mol Med, Wellington, New Zealand
[8] Uppsala Univ, Dept Immunol Genet & Pathol, Uppsala, Sweden
[9] Stavanger Univ Hosp, Dept Pathol, Stavanger, Norway
[10] Univ Stavanger, Fac Sci & Technol, Stavanger, Norway
[11] Karolinska Inst, Dept Oncol Pathol, Solna, Sweden
基金
瑞典研究理事会;
关键词
PROSTATE-CANCER; BIOPSIES;
D O I
10.1038/s41467-022-34945-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Unreliable predictions can occur when an artificial intelligence (AI) system is presented with data it has not been exposed to during training. We demonstrate the use of conformal prediction to detect unreliable predictions, using histopathological diagnosis and grading of prostate biopsies as example. We digitized 7788 prostate biopsies from 1192 men in the STHLM3 diagnostic study, used for training, and 3059 biopsies from 676 men used for testing. With conformal prediction, 1 in 794 (0.1%) predictions is incorrect for cancer diagnosis (compared to 14 errors [2%] without conformal prediction) while 175 (22%) of the predictions are flagged as unreliable when the AI-system is presented with new data from the same lab and scanner that it was trained on. Conformal prediction could with small samples (N = 49 for external scanner, N = 10 for external lab and scanner, and N = 12 for external lab, scanner and pathology assessment) detect systematic differences in external data leading to worse predictive performance. The AI-system with conformal prediction commits 3 (2%) errors for cancer detection in cases of atypical prostate tissue compared to 44 (25%) without conformal prediction, while the system flags 143 (80%) unreliable predictions. We conclude that conformal prediction can increase patient safety of AI-systems.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Estimating diagnostic uncertainty in artificial intelligence assisted pathology using conformal prediction
    Henrik Olsson
    Kimmo Kartasalo
    Nita Mulliqi
    Marco Capuccini
    Pekka Ruusuvuori
    Hemamali Samaratunga
    Brett Delahunt
    Cecilia Lindskog
    Emiel A. M. Janssen
    Anders Blilie
    Lars Egevad
    Ola Spjuth
    Martin Eklund
    Nature Communications, 13
  • [2] Artificial intelligence in diagnostic pathology
    Saba Shafi
    Anil V. Parwani
    Diagnostic Pathology, 18
  • [3] Artificial intelligence in diagnostic pathology
    Shafi, Saba
    Parwani, Anil V.
    DIAGNOSTIC PATHOLOGY, 2023, 18 (01)
  • [4] A computer-assisted diagnostic system (artificial intelligence) for surgical pathology.
    Qu, ZH
    Nguyen, ND
    Kuruvilla, S
    AMERICAN JOURNAL OF CLINICAL PATHOLOGY, 2002, 118 (04) : 649 - 649
  • [5] Physician perspectives on integration of artificial intelligence into diagnostic pathology
    Sarwar, Shihab
    Dent, Anglin
    Faust, Kevin
    Richer, Maxime
    Djuric, Ugljesa
    Van Ommeren, Randy
    Diamandis, Phedias
    NPJ DIGITAL MEDICINE, 2019, 2 (1)
  • [6] Physician perspectives on integration of artificial intelligence into diagnostic pathology
    Shihab Sarwar
    Anglin Dent
    Kevin Faust
    Maxime Richer
    Ugljesa Djuric
    Randy Van Ommeren
    Phedias Diamandis
    npj Digital Medicine, 2
  • [7] Pros and cons of artificial intelligence implementation in diagnostic pathology
    van Diest, Paul J.
    Flach, Rachel N.
    van Dooijeweert, Carmen
    Makineli, Seher
    Breimer, Gerben E.
    Stathonikos, Nikolas
    Pham, Paul
    Nguyen, Tri Q.
    Veta, Mitko
    HISTOPATHOLOGY, 2024, 84 (06) : 924 - 934
  • [8] Bridging uncertainty gaps with artificial intelligence-assisted syngas precise prediction in coal gasification
    Zhao, Ying-jie
    Wang, Jian-cheng
    Yi, Qun
    CHEMICAL ENGINEERING SCIENCE, 2025, 301
  • [9] Artificial intelligence assisted fatigue failure prediction
    Schneller, W.
    Leitner, M.
    Maier, B.
    Gruen, F.
    Jantschner, O.
    Leuders, S.
    Pfeifer, T.
    INTERNATIONAL JOURNAL OF FATIGUE, 2022, 155