CMOS-Compatible Protonic Programmable Resistor Based on Phosphosilicate Glass Electrolyte for Analog Deep Learning

被引:42
|
作者
Onen, Murat [1 ,2 ]
Emond, Nicolas [2 ]
Li, Ju [2 ,3 ,4 ]
Yildiz, Bilge [2 ,3 ,4 ]
del Alamo, Jesus A. [1 ,2 ]
机构
[1] MIT, Microsyst Technol Labs, Cambridge, MA 02139 USA
[2] MIT, IBM Watson AI Lab, Cambridge, MA 02142 USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[4] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
analog computing; doped silicon dioxide films; proton intercalation; programmable resistors; EXCHANGE MEMBRANES; CONDUCTIVITY; FILMS; OXIDE; DEVICE; ENERGY; MEMORY;
D O I
10.1021/acs.nanolett.1c01614
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ion intercalation based programmable resistors have emerged as a potential next-generation technology for analog deep-learning applications. Proton, being the smallest ion, is a very promising candidate to enable devices with high modulation speed, low energy consumption, and enhanced endurance. In this work, we report on the first back-end CMOS-compatible nonvolatile protonic programmable resistor enabled by the integration of phosphosilicate glass (PSG) as the proton solid electrolyte layer. PSG is an outstanding solid electrolyte material that displays both excellent protonic conduction and electronic insulation characteristics. Moreover, it is a well-known material within conventional Si fabrication, which enables precise deposition control and scalability. Our scaled all-solid-state three-terminal devices show desirable modulation characteristics in terms of symmetry, retention, endurance, and energy efficiency. Protonic programmable resistors based on phosphosilicate glass, therefore, represent promising candidates to realize nanoscale analog crossbar processors for monolithic CMOS integration.
引用
收藏
页码:6111 / 6116
页数:6
相关论文
共 11 条
  • [1] Phosphosilicate Glass-Based Nanosecond Protonic Programmable Resistors for Analog Deep Learning
    Onen, Murat
    Li, Ju
    Yildiz, Bilge
    del Alamo, Jesus A.
    2023 7TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE, EDTM, 2023,
  • [2] Nanosecond protonic programmable resistors for analog deep learning
    Onen, Murat
    Emond, Nicolas
    Wang, Baoming
    Zhang, Difei
    Ross, Frances M.
    Li, Ju
    Yildiz, Bilge
    del Alamo, Jesus A.
    SCIENCE, 2022, 377 (6605) : 539 - +
  • [3] Metal-oxide based, CMOS-compatible ECRAM for Deep Learning Accelerator
    Kim, Seyoung
    Todorov, Teodor
    Onen, Murat
    Gokmen, Tayfun
    Bishop, Douglas
    Solomon, Paul
    Lee, Ko-Tao
    Copel, Matt
    Farmer, Damon B.
    Ott, John A.
    Ando, Takashi
    Miyazoe, Hiroyuki
    Narayanan, Vijay
    Rozen, John
    2019 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2019,
  • [4] Dynamics of PSG-Based Nanosecond Protonic Programmable Resistors for Analog Deep Learning
    Onen, M.
    Li, J.
    Yildiz, B.
    del Alamo, J. A.
    2022 INTERNATIONAL ELECTRON DEVICES MEETING, IEDM, 2022,
  • [5] CMOS-compatible electrochemical synaptic transistor arrays for deep learning accelerators
    Cui, Jinsong
    An, Fufei
    Qian, Jiangchao
    Wu, Yuxuan
    Sloan, Luke L.
    Pidaparthy, Saran
    Zuo, Jian-Min
    Cao, Qing
    NATURE ELECTRONICS, 2023, 6 (04) : 292 - +
  • [6] CMOS-compatible electrochemical synaptic transistor arrays for deep learning accelerators
    Jinsong Cui
    Fufei An
    Jiangchao Qian
    Yuxuan Wu
    Luke L. Sloan
    Saran Pidaparthy
    Jian-Min Zuo
    Qing Cao
    Nature Electronics, 2023, 6 : 292 - 300
  • [7] Role of the electrolyte layer in CMOS-compatible and oxide-based vertical three-terminal ECRAM
    Han, Geonhui
    Seo, Jongseon
    Kim, Hyejin
    Lee, Deaseok
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (15) : 5167 - 5173
  • [8] A CMOS-compatible electronic synapse device based on Cu/SiO2/W programmable metallization cells
    Chen, Wenhao
    Fang, Runchen
    Balaban, Mehmet B.
    Yu, Weijie
    Gonzalez-Velo, Yago
    Barnaby, Hugh J.
    Kozicki, Michael N.
    NANOTECHNOLOGY, 2016, 27 (25)
  • [9] CMOS-Compatible Metasurface-based Subtractive Color Filters on a 300-mm Glass Wafer
    Xu, Zhengji
    Li, Nanxi
    Dong, Yuan
    Hu, Ting
    Zhong, Qize
    Kang, Wei
    Zhou, Yanyan
    Li, Dongdong
    Fu, Yuan Hsing
    Lin, Qunying
    Zhu, Shiyang
    Singh, Navab
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [10] Machine learning-assisted design guidelines and performance prediction of CMOS-compatible metal oxide-based resistive switching memory devices
    Dongale, Tukaram D.
    Sutar, Santosh S.
    Dange, Yogesh D.
    Khot, Atul C.
    Kundale, Somnath S.
    Patil, Swapnil R.
    Patil, Shubham V.
    Patil, Aditya A.
    Khot, Sagar S.
    Patil, Pramod J.
    Bae, Jinho
    Kamat, Rajanish K.
    Kim, Tae Geun
    APPLIED MATERIALS TODAY, 2022, 29