Dynamics of PSG-Based Nanosecond Protonic Programmable Resistors for Analog Deep Learning

被引:5
|
作者
Onen, M. [1 ]
Li, J. [1 ]
Yildiz, B. [1 ]
del Alamo, J. A. [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
关键词
D O I
10.1109/IEDM45625.2022.10019365
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We study the dynamics of a new class of three-terminal programmable resistors based on proton intercalation into a metal oxide channel using PSG as electrolyte for energy-efficient analog deep-learning hardware accelerators. These CMOS- and BEOL-compatible nanoscale devices exhibit excellent characteristics in terms of high operation speed (5 ns/pulse), high energy efficiency (similar to fJ/pulse), many (1000) nonvolatile conductance states across a large dynamic range (10x), linear and symmetric modulation, and high endurance [1]. This work presents the first real-time study of the dynamics of these devices evidencing impulse-like non-volatile conductance modulation with nanosecond-range pulses without any visible equilibration dynamics. Our study also reveals that the bottleneck to channel conductance modulation is proton transfer across the PSG/WO3 interface and not proton transport across the PSG.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Nanosecond protonic programmable resistors for analog deep learning
    Onen, Murat
    Emond, Nicolas
    Wang, Baoming
    Zhang, Difei
    Ross, Frances M.
    Li, Ju
    Yildiz, Bilge
    del Alamo, Jesus A.
    SCIENCE, 2022, 377 (6605) : 539 - +
  • [2] Phosphosilicate Glass-Based Nanosecond Protonic Programmable Resistors for Analog Deep Learning
    Onen, Murat
    Li, Ju
    Yildiz, Bilge
    del Alamo, Jesus A.
    2023 7TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE, EDTM, 2023,
  • [3] CMOS-Compatible Protonic Programmable Resistor Based on Phosphosilicate Glass Electrolyte for Analog Deep Learning
    Onen, Murat
    Emond, Nicolas
    Li, Ju
    Yildiz, Bilge
    del Alamo, Jesus A.
    NANO LETTERS, 2021, 21 (14) : 6111 - 6116
  • [4] WEARABLE DEVICE ECG AND G-SENSOR-BASED SLEEP STAGE EVALUATION USING PSG-BASED LEARNING SIGNAL
    Lin, Y.
    Wang, P.
    Lin, C.
    Sadrawi, M.
    Lin, C.
    Hsieh, Y.
    Kuo, C.
    Chien, J.
    Haraikawa, K.
    Abbod, M. F.
    Shieh, J.
    SLEEP, 2018, 41 : A123 - A123
  • [5] Coding Programmable Metasurfaces Based on Deep Learning Techniques
    Shan, Tao
    Li, Maokun
    2019 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND USNC-URSI RADIO SCIENCE MEETING, 2019, : 245 - 246
  • [6] Coding Programmable Metasurfaces Based on Deep Learning Techniques
    Shan, Tao
    Pan, Xiaotian
    Li, Maokun
    Xu, Shenheng
    Yang, Fan
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2020, 10 (01) : 114 - 125
  • [7] Analog Circuit Fault Diagnosis Based on Deep Learning
    Zhao, Dezan
    Xing, Jun
    Wang, Zhisen
    Proceedings of the 2016 4th International Conference on Mechanical Materials and Manufacturing Engineering (MMME 2016), 2016, 79 : 254 - 256
  • [8] Confined PCM-based Analog Synaptic Devices offering Low Resistance-drift and 1000 Programmable States for Deep Learning
    Kim, W.
    Bruce, R. L.
    Masuda, T.
    Fraczak, G. W.
    Gong, N.
    Adusumilli, P.
    Ambrogio, S.
    Tsai, H.
    Bruley, J.
    Han, J-P
    Longstreet, M.
    Carta, F.
    Suu, K.
    BrightSky, M.
    2019 SYMPOSIUM ON VLSI TECHNOLOGY, 2019, : T66 - T67
  • [9] Analog circuit sizing based on Evolutionary Algorithms and deep learning
    Lberni, Abdelaziz
    Marktani, Malika Alami
    Ahaitouf, Abdelaziz
    Ahaitouf, Ali
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [10] PSG-Yolov5: A Paradigm for Traffic Sign Detection and Recognition Algorithm Based on Deep Learning
    Hu, Jie
    Wang, Zhanbin
    Chang, Minjie
    Xie, Lihao
    Xu, Wencai
    Chen, Nan
    SYMMETRY-BASEL, 2022, 14 (11):