Machine learning and deep learning based predictive quality in manufacturing: a systematic review

被引:117
|
作者
Tercan, Hasan [1 ]
Meisen, Tobias [1 ]
机构
[1] Univ Wuppertal, Rainer Gruenter Str 21, Wuppertal, Germany
关键词
Industry; 4; 0; Predictive quality; Machine learning; Deep learning; Manufacturing; Quality assurance; Artificial intelligence; RECURRENT NEURAL-NETWORK; SURFACE-ROUGHNESS; CUTTING PARAMETERS; PRODUCT QUALITY; REAL; OPTIMIZATION; DESIGN; MODEL; CLASSIFICATION; CLASSIFIERS;
D O I
10.1007/s10845-022-01963-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the ongoing digitization of the manufacturing industry and the ability to bring together data from manufacturing processes and quality measurements, there is enormous potential to use machine learning and deep learning techniques for quality assurance. In this context, predictive quality enables manufacturing companies to make data-driven estimations about the product quality based on process data. In the current state of research, numerous approaches to predictive quality exist in a wide variety of use cases and domains. Their applications range from quality predictions during production using sensor data to automated quality inspection in the field based on measurement data. However, there is currently a lack of an overall view of where predictive quality research stands as a whole, what approaches are currently being investigated, and what challenges currently exist. This paper addresses these issues by conducting a comprehensive and systematic review of scientific publications between 2012 and 2021 dealing with predictive quality in manufacturing. The publications are categorized according to the manufacturing processes they address as well as the data bases and machine learning models they use. In this process, key insights into the scope of this field are collected along with gaps and similarities in the solution approaches. Finally, open challenges for predictive quality are derived from the results and an outlook on future research directions to solve them is provided.
引用
收藏
页码:1879 / 1905
页数:27
相关论文
共 50 条
  • [31] Predictive models for concrete properties using machine learning and deep learning approaches: A review
    Moein, Mohammad Mohtasham
    Saradar, Ashkan
    Rahmati, Komeil
    Mousavinejad, Seyed Hosein Ghasemzadeh
    Bristow, James
    Aramali, Vartenie
    Karakouzian, Moses
    JOURNAL OF BUILDING ENGINEERING, 2023, 63
  • [32] Machine Learning-Based Predictive Models for Patients with Venous Thromboembolism: A Systematic Review
    Danilatou, Vasiliki
    Dimopoulos, Dimitrios
    Kostoulas, Theodoros
    Douketis, James
    THROMBOSIS AND HAEMOSTASIS, 2024, 124 (11) : 1040 - 1052
  • [33] Machine/Deep Learning for Software Engineering: A Systematic Literature Review
    Wang, Simin
    Huang, Liguo
    Gao, Amiao
    Ge, Jidong
    Zhang, Tengfei
    Feng, Haitao
    Satyarth, Ishna
    Li, Ming
    Zhang, He
    Ng, Vincent
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2023, 49 (03) : 1188 - 1231
  • [34] A comparative predictive maintenance application based on machine and deep learning
    Hatipoglu, Aysenur
    Guneri, Yigit
    Yilmaz, Ersen
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2024, 39 (02): : 1037 - 1048
  • [35] A Review of Machine Learning and Deep Learning Applications
    Shinde, Pramila P.
    Shah, Seema
    2018 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2018,
  • [36] Machine Learning and Deep Learning Methods for Skin Lesion Classification and Diagnosis: A Systematic Review
    Kassem, Mohamed A.
    Hosny, Khalid M.
    Damasevicius, Robertas
    Eltoukhy, Mohamed Meselhy
    DIAGNOSTICS, 2021, 11 (08)
  • [37] Crime Prediction Using Machine Learning and Deep Learning: A Systematic Review and Future Directions
    Mandalapu, Varun
    Elluri, Lavanya
    Vyas, Piyush
    Roy, Nirmalya
    IEEE ACCESS, 2023, 11 : 60153 - 60170
  • [38] Crop mapping using supervised machine learning and deep learning: a systematic literature review
    Alami Machichi, Mouad
    Mansouri, Loubna El
    Imani, Yasmina
    Bourja, Omar
    Lahlou, Ouiam
    Zennayi, Yahya
    Bourzeix, Francois
    Hanade Houmma, Ismaguil
    Hadria, Rachid
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (08) : 2717 - 2753
  • [39] A systematic review on smart waste biomass production using machine learning and deep learning
    Peng, Wei
    Sadaghiani, Omid Karimi
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2023, 25 (06) : 3175 - 3191
  • [40] Machine Learning and Deep Learning in Chemical Health and Safety: A Systematic Review of Techniques and Applications
    Jiao, Zeren
    Hu, Pingfan
    Xu, Hongfei
    Wang, Qingsheng
    ACS CHEMICAL HEALTH & SAFETY, 2020, 27 (06) : 316 - 334