On application of nonparametric regression estimation to options pricing

被引:0
|
作者
Kohler, Michael [1 ]
Krzyiak, Adam [2 ]
Walk, Harro [3 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, Petersenstr 30, D-64289 Darmstadt, Germany
[2] Concordia Univ, Dept Comp Sci, Montreal, PQ H3G 1M8, Canada
[3] Univ Stuttgart, Fachbereich Math, D-70569 Stuttgart, Germany
关键词
MONTE-CARLO ALGORITHM; AMERICAN OPTIONS; SIMULATION;
D O I
10.1109/ISIT.2009.5205821
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider American options also called Bermudan options in discrete time. We use the dual approach to derive upper bounds on the price of such options using only a reduced number of nested Monte Carlo steps. The key idea is to use nonparametric regression to estimate continuation values and all other required conditional expectations and to combine the resulting estimate with another estimate computed by using only a reduced number of nested Monte Carlo steps. The mean value of the resulting estimate is an upper bound on the option price. One can show that the estimates of the option prices are universally consistent, i.e., they converge to the true price regardless of the structure of the continuation values. The finite sample behavior is validated by experiments on simulated data.
引用
收藏
页码:1579 / +
页数:3
相关论文
共 50 条
  • [41] Partial deconvolution estimation in nonparametric regression
    Shi, Jianhong
    Bai, Xiuqin
    Song, Weixing
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2020, 48 (03): : 535 - 560
  • [42] NONPARAMETRIC-ESTIMATION OF A REGRESSION FUNCTION
    BURMAN, P
    CHEN, KW
    ANNALS OF STATISTICS, 1989, 17 (04): : 1567 - 1596
  • [43] Variance estimation in nonparametric multiple regression
    Kulasekera, KB
    Gallagher, C
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2002, 31 (08) : 1373 - 1383
  • [44] CONSISTENT WINDOW ESTIMATION IN NONPARAMETRIC REGRESSION
    SPIEGELMAN, C
    SACKS, J
    ANNALS OF STATISTICS, 1980, 8 (02): : 240 - 246
  • [45] On conditional variance estimation in nonparametric regression
    Chib, Siddhartha
    Greenberg, Edward
    STATISTICS AND COMPUTING, 2013, 23 (02) : 261 - 270
  • [46] Nonparametric estimation of a switching regression model
    Guilatco, Ruffy S.
    Barrios, Erniel B.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (02) : 840 - 854
  • [47] Nonparametric functional estimation by asymptotic regression
    Collins, J
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2003, 32 (06) : 1169 - 1195
  • [48] Robust estimation for nonparametric generalized regression
    Bianco, Ana M.
    Boente, Graciela
    Sombielle, Susana
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (12) : 1986 - 1994
  • [49] Nonparametric, multidimensional estimation of regression derivatives
    Blondin, D
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (10) : 713 - 716
  • [50] Estimation of nonparametric regression models by wavelets
    Pedro A. Morettin
    Rogério F. Porto
    São Paulo Journal of Mathematical Sciences, 2022, 16 : 539 - 565