On application of nonparametric regression estimation to options pricing

被引:0
|
作者
Kohler, Michael [1 ]
Krzyiak, Adam [2 ]
Walk, Harro [3 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, Petersenstr 30, D-64289 Darmstadt, Germany
[2] Concordia Univ, Dept Comp Sci, Montreal, PQ H3G 1M8, Canada
[3] Univ Stuttgart, Fachbereich Math, D-70569 Stuttgart, Germany
关键词
MONTE-CARLO ALGORITHM; AMERICAN OPTIONS; SIMULATION;
D O I
10.1109/ISIT.2009.5205821
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider American options also called Bermudan options in discrete time. We use the dual approach to derive upper bounds on the price of such options using only a reduced number of nested Monte Carlo steps. The key idea is to use nonparametric regression to estimate continuation values and all other required conditional expectations and to combine the resulting estimate with another estimate computed by using only a reduced number of nested Monte Carlo steps. The mean value of the resulting estimate is an upper bound on the option price. One can show that the estimates of the option prices are universally consistent, i.e., they converge to the true price regardless of the structure of the continuation values. The finite sample behavior is validated by experiments on simulated data.
引用
收藏
页码:1579 / +
页数:3
相关论文
共 50 条
  • [21] Nonparametric Estimation of Fractional Option Pricing Model
    Li, Qing
    Liu, Songlin
    Zhou, Misi
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [22] Nonparametric Estimation using Regression Quantiles in a Regression Model
    Han, Sang Moon
    Jung, Byoung Cheol
    KOREAN JOURNAL OF APPLIED STATISTICS, 2012, 25 (05) : 793 - 802
  • [23] Optimal Estimation of Derivatives in Nonparametric Regression
    Dai, Wenlin
    Tong, Tiejun
    Genton, Marc G.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [24] Nonparametric estimation of regression level sets
    Cavalier, L
    STATISTICS, 1997, 29 (02) : 131 - 160
  • [25] Robust nonparametric estimation for spatial regression
    Gheriballah, Abdelkader
    Laksaci, Ali
    Rouane, Rachida
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (07) : 1656 - 1670
  • [26] COPULA BASED NONPARAMETRIC REGRESSION ESTIMATION
    Matvejevs, Andrejs
    Sadurskis, Karlis
    APLIMAT 2009: 8TH INTERNATIONAL CONFERENCE, PROCEEDINGS, 2009, : 183 - 185
  • [27] THE ESTIMATION OF RESIDUAL VARIANCE IN NONPARAMETRIC REGRESSION
    BUCKLEY, MJ
    EAGLESON, GK
    SILVERMAN, BW
    BIOMETRIKA, 1988, 75 (02) : 189 - 199
  • [28] ON VARIANCE-ESTIMATION IN NONPARAMETRIC REGRESSION
    HALL, P
    MARRON, JS
    BIOMETRIKA, 1990, 77 (02) : 415 - 419
  • [29] Efficient estimation of a shift in nonparametric regression
    Schick, A
    STATISTICS & PROBABILITY LETTERS, 1999, 41 (03) : 287 - 301
  • [30] Optimal estimation of derivatives in nonparametric regression
    Dai, Wenlin
    Tong, Tiejun
    Genton, Marc G.
    Journal of Machine Learning Research, 2016, 17