Semi-Supervised Clustering Based on Exemplars Constraints

被引:0
|
作者
Wang, Sailan [1 ]
Yang, Zhenzhi [2 ]
Yang, Jin [3 ]
Wang, Hongjun [4 ]
机构
[1] Sichuan Univ, Sch Tourism, Chengdu, Peoples R China
[2] Sichuan Univ, Jincheng Inst, Dept Comp Sci & Software Engn, Chengdu, Peoples R China
[3] Leshan Normal Univ, Dept Comp Sci, Leshan, Peoples R China
[4] Southwest Jiaotong Univ, Sch Informat Sci & Technol, Chengdu, Peoples R China
基金
美国国家科学基金会;
关键词
semi-supervised clustering; mixture model; pairwise constraints; exemplars constraints; PAIRWISE CONSTRAINTS; MATRIX;
D O I
10.1587/transinf.2016EDP7201
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In general, semi-supervised clustering can outperform unsupervised clustering. Since 2001, pairwise constraints for semi-supervised clustering have been an important paradigm in this field. In this paper, we show that pairwise constraints (ECs) can affect the performance of clustering in certain situations and analyze the reasons for this in detail. To overcome these disadvantages, we first outline some exemplars constraints. Based on these constraints, we then describe a semi-supervised clustering framework, and design an exemplars constraints expectation-maximization algorithm. Finally, standard datasets are selected for experiments, and experimental results are presented, which show that the exemplars constraints outperform the corresponding unsupervised clustering and semi-supervised algorithms based on pairwise constraints.
引用
收藏
页码:1231 / 1241
页数:11
相关论文
共 50 条
  • [31] Consistency regularization for deep semi-supervised clustering with pairwise constraints
    Huang, Dan
    Hu, Jie
    Li, Tianrui
    Du, Shengdong
    Chen, Hongmei
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (11) : 3359 - 3372
  • [32] Consistency regularization for deep semi-supervised clustering with pairwise constraints
    Dan Huang
    Jie Hu
    Tianrui Li
    Shengdong Du
    Hongmei Chen
    [J]. International Journal of Machine Learning and Cybernetics, 2022, 13 : 3359 - 3372
  • [33] Semi-supervised Spectral Clustering with automatic propagation of pairwise constraints
    Voiron, Nicolas
    Benoit, Alexandre
    Filip, Andrei
    Lambert, Patrick
    Ionescu, Bogdan
    [J]. 2015 13TH INTERNATIONAL WORKSHOP ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI), 2015,
  • [34] MVS-based Semi-Supervised Clustering
    Yan, Yang
    Chen, Lihui
    Chan, Chee Keong
    [J]. 2013 9TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING (ICICS), 2013,
  • [35] Semi-Supervised Density-Based Clustering
    Lelis, Levi
    Sander, Joerg
    [J]. 2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2009, : 842 - 847
  • [36] Semi-supervised Classification Based on Clustering Ensembles
    Chen, Si
    Guo, Gongde
    Chen, Lifei
    [J]. ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PROCEEDINGS, 2009, 5855 : 629 - 638
  • [37] Density-based semi-supervised clustering
    Ruiz, Carlos
    Spiliopoulou, Myra
    Menasalvas, Ernestina
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2010, 21 (03) : 345 - 370
  • [38] An efficient semi-supervised graph based clustering
    Viet-Vu Vu
    [J]. INTELLIGENT DATA ANALYSIS, 2018, 22 (02) : 297 - 307
  • [39] Density-based semi-supervised clustering
    Carlos Ruiz
    Myra Spiliopoulou
    Ernestina Menasalvas
    [J]. Data Mining and Knowledge Discovery, 2010, 21 : 345 - 370
  • [40] Active semi-supervised clustering algorithm based-on pair-wise constraints
    [J]. Jiang, W.-J. (nudtjwj@163.com), 2013, Northeast University (28):