Semi-supervised Spectral Clustering with automatic propagation of pairwise constraints

被引:0
|
作者
Voiron, Nicolas [1 ]
Benoit, Alexandre [1 ]
Filip, Andrei [2 ]
Lambert, Patrick [1 ]
Ionescu, Bogdan [2 ]
机构
[1] Univ Savoie Mont Blanc, LISTIC, F-74940 Annecy Le Vieux, France
[2] Univ Politehn Bucuresti, LAPI, Bucharest 061071, Romania
关键词
Graph Cut; Spectral Clustering; semi-supervised learning; pairwise constraints; video clustering;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In our data driven world, clustering is of major importance to help end-users and decision makers understanding information structures. Supervised learning techniques rely on ground truth to perform the classification and are usually subject to overtraining issues. On the other hand, unsupervised clustering techniques study the structure of the data without disposing of any training data. Given the difficulty of the task, unsupervised learning tends to provide inferior results to supervised learning A compromise is then to use learning only for some of the ambiguous classes, in order to boost performances. In this context, this paper studies the impact of pairwise constraints to unsupervised Spectral Clustering. We introduce a new generalization of constraint propagation which maximizes partitioning quality while reducing annotation costs. Experiments show the efficiency of the proposed scheme.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Research of semi-supervised spectral clustering algorithm based on pairwise constraints
    Ding, Shifei
    Jia, Hongjie
    Zhang, Liwen
    Jin, Fengxiang
    [J]. NEURAL COMPUTING & APPLICATIONS, 2014, 24 (01): : 211 - 219
  • [2] Research of semi-supervised spectral clustering algorithm based on pairwise constraints
    Shifei Ding
    Hongjie Jia
    Liwen Zhang
    Fengxiang Jin
    [J]. Neural Computing and Applications, 2014, 24 : 211 - 219
  • [3] Semi-supervised Clustering with Pairwise and Size Constraints
    Zhang, Shaohong
    Wong, Hau-San
    Xie, Dongqing
    [J]. PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 2450 - 2457
  • [4] Semi-supervised DenPeak Clustering with Pairwise Constraints
    Ren, Yazhou
    Hu, Xiaohui
    Shi, Ke
    Yu, Guoxian
    Yao, Dezhong
    Xu, Zenglin
    [J]. PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2018, 11012 : 837 - 850
  • [5] SEMI-SUPERVISED K-WAY SPECTRAL CLUSTERING USING PAIRWISE CONSTRAINTS
    Wacquet, Guillaume
    Hebert, Pierre-Alexandre
    Poisson, Emilie Caillault
    Hamad, Denis
    [J]. NCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NEURAL COMPUTATION THEORY AND APPLICATIONS, 2011, : 72 - 81
  • [6] Effective semi-supervised graph clustering with pairwise constraints
    Chen, Jingwei
    Xie, Shiyu
    Yang, Hui
    Nie, Feiping
    [J]. INFORMATION SCIENCES, 2024, 681
  • [7] Semi-Supervised Maximum Margin Clustering with Pairwise Constraints
    Zeng, Hong
    Cheung, Yiu-Ming
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2012, 24 (05) : 926 - 939
  • [8] Semi-Supervised Agglomerative Hierarchical Clustering Algorithms with Pairwise Constraints
    Miyamoto, Sadaaki
    Terami, Akihisa
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [9] Consistency regularization for deep semi-supervised clustering with pairwise constraints
    Dan Huang
    Jie Hu
    Tianrui Li
    Shengdong Du
    Hongmei Chen
    [J]. International Journal of Machine Learning and Cybernetics, 2022, 13 : 3359 - 3372
  • [10] Consistency regularization for deep semi-supervised clustering with pairwise constraints
    Huang, Dan
    Hu, Jie
    Li, Tianrui
    Du, Shengdong
    Chen, Hongmei
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (11) : 3359 - 3372