Semi-supervised Spectral Clustering with automatic propagation of pairwise constraints

被引:0
|
作者
Voiron, Nicolas [1 ]
Benoit, Alexandre [1 ]
Filip, Andrei [2 ]
Lambert, Patrick [1 ]
Ionescu, Bogdan [2 ]
机构
[1] Univ Savoie Mont Blanc, LISTIC, F-74940 Annecy Le Vieux, France
[2] Univ Politehn Bucuresti, LAPI, Bucharest 061071, Romania
关键词
Graph Cut; Spectral Clustering; semi-supervised learning; pairwise constraints; video clustering;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In our data driven world, clustering is of major importance to help end-users and decision makers understanding information structures. Supervised learning techniques rely on ground truth to perform the classification and are usually subject to overtraining issues. On the other hand, unsupervised clustering techniques study the structure of the data without disposing of any training data. Given the difficulty of the task, unsupervised learning tends to provide inferior results to supervised learning A compromise is then to use learning only for some of the ambiguous classes, in order to boost performances. In this context, this paper studies the impact of pairwise constraints to unsupervised Spectral Clustering. We introduce a new generalization of constraint propagation which maximizes partitioning quality while reducing annotation costs. Experiments show the efficiency of the proposed scheme.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A Lagrangian-based score for assessing the quality of pairwise constraints in semi-supervised clustering
    Randel, Rodrigo
    Aloise, Daniel
    Blanchard, Simon J.
    Hertz, Alain
    DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 35 (06) : 2341 - 2368
  • [42] Discriminative semi-supervised clustering analysis with pairwise constreints
    Yin, Xue-Song
    Hu, En-Liang
    Chen, Song-Can
    Ruan Jian Xue Bao/Journal of Software, 2008, 19 (11): : 2791 - 2802
  • [43] Semi-supervised Latent Block Model with pairwise constraints
    Riverain, Paul
    Fossier, Simon
    Nadif, Mohamed
    MACHINE LEARNING, 2022, 111 (05) : 1739 - 1764
  • [44] Semi-Supervised Metric Learning Using Pairwise Constraints
    Baghshah, Mahdieh Soleymani
    Shouraki, Saeed Bagheri
    21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 1217 - 1222
  • [45] Semi-Supervised Nonlinear Dimensionality Reduction with Pairwise Constraints
    Chen, Min
    Zhang, Zhao
    2ND IEEE INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER CONTROL (ICACC 2010), VOL. 5, 2010, : 116 - 121
  • [46] Semi-supervised Latent Block Model with pairwise constraints
    Paul Riverain
    Simon Fossier
    Mohamed Nadif
    Machine Learning, 2022, 111 : 1739 - 1764
  • [47] Semi-Supervised EEG Clustering With Multiple Constraints
    Dai, Chenglong
    Wu, Jia
    Monaghan, Jessica J. M.
    Li, Guanghui
    Peng, Hao
    Becker, Stefanie I.
    McAlpine, David
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (08) : 8529 - 8544
  • [48] Active Learning of Constraints for Semi-Supervised Clustering
    Xiong, Sicheng
    Azimi, Javad
    Fern, Xiaoli Z.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (01) : 43 - 54
  • [49] On the effects of constraints in semi-supervised hierarchical clustering
    Kestler, Hans A.
    Kraus, Johann M.
    Palm, Guenther
    Schwenker, Friedhelm
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, PROCEEDINGS, 2006, 4087 : 57 - 66
  • [50] Semi-Supervised Clustering Based on Exemplars Constraints
    Wang, Sailan
    Yang, Zhenzhi
    Yang, Jin
    Wang, Hongjun
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (06) : 1231 - 1241