Semi-Supervised Agglomerative Hierarchical Clustering Algorithms with Pairwise Constraints

被引:0
|
作者
Miyamoto, Sadaaki [1 ]
Terami, Akihisa [1 ]
机构
[1] Univ Tsukuba, Dept Risk Engn, Tsukuba, Ibaraki 3058573, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently semi-supervised clustering has been studied by many researchers, but there are no extensive studies using different types of algorithms. In this paper we consider agglomerative hierarchical algorithms with pairwise constraints. The constraints are directly introduced to the single linkage which is equivalent to the transitive closure algorithm, while the centroid method and the Ward methods need kernelization of the algorithms. Simple numerical examples are shown to see how the constraints work.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Semi-supervised Agglomerative Hierarchical Clustering Using Clusterwise Tolerance Based Pairwise Constraints
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    [J]. MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI), 2010, 6408 : 152 - 162
  • [2] Semi-supervised Clustering with Pairwise and Size Constraints
    Zhang, Shaohong
    Wong, Hau-San
    Xie, Dongqing
    [J]. PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 2450 - 2457
  • [3] Semi-supervised DenPeak Clustering with Pairwise Constraints
    Ren, Yazhou
    Hu, Xiaohui
    Shi, Ke
    Yu, Guoxian
    Yao, Dezhong
    Xu, Zenglin
    [J]. PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2018, 11012 : 837 - 850
  • [4] Semi-supervised hierarchical clustering algorithms
    Amar, A
    Labzour, NT
    Bensaid, A
    [J]. SIXTH SCANDINAVIAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 1997, 40 : 232 - 239
  • [5] Semi-Supervised Maximum Margin Clustering with Pairwise Constraints
    Zeng, Hong
    Cheung, Yiu-Ming
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2012, 24 (05) : 926 - 939
  • [6] Effective semi-supervised graph clustering with pairwise constraints
    Chen, Jingwei
    Xie, Shiyu
    Yang, Hui
    Nie, Feiping
    [J]. INFORMATION SCIENCES, 2024, 681
  • [7] On the effects of constraints in semi-supervised hierarchical clustering
    Kestler, Hans A.
    Kraus, Johann M.
    Palm, Guenther
    Schwenker, Friedhelm
    [J]. ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, PROCEEDINGS, 2006, 4087 : 57 - 66
  • [8] Data mining for text categorization with semi-supervised agglomerative hierarchical clustering
    Skarmeta, AG
    Bensaid, A
    Tazi, N
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2000, 15 (07) : 633 - 646
  • [9] Consistency regularization for deep semi-supervised clustering with pairwise constraints
    Dan Huang
    Jie Hu
    Tianrui Li
    Shengdong Du
    Hongmei Chen
    [J]. International Journal of Machine Learning and Cybernetics, 2022, 13 : 3359 - 3372
  • [10] Consistency regularization for deep semi-supervised clustering with pairwise constraints
    Huang, Dan
    Hu, Jie
    Li, Tianrui
    Du, Shengdong
    Chen, Hongmei
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (11) : 3359 - 3372