Semi-supervised Agglomerative Hierarchical Clustering Using Clusterwise Tolerance Based Pairwise Constraints

被引:0
|
作者
Hamasuna, Yukihiro [1 ]
Endo, Yasunori [1 ]
Miyamoto, Sadaaki [1 ]
机构
[1] Univ Tsukuba, Fac Syst & Informat Engn, Dept Risk Engn, Tsukuba, Ibaraki 3058573, Japan
关键词
semi-supervised clustering; agglomerative hierarchical clustering; centroid method; clusterwise tolerance; pairwise constraints;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, semi-supervised clustering has been remarked and discussed in many researches. In semi-supervised clustering, pairwise constraints, that is, must-link and cannot-link are frequently used in order to improve clustering results by using prior knowledges or informations. In this paper, we will propose a clusterwise tolerance based pairwise constraint. In addition, we will propose semi-supervised agglomerative hierarchical clustering algorithms with centroid method based on it. Moreover, we will show the effectiveness of proposed method through numerical examples.
引用
收藏
页码:152 / 162
页数:11
相关论文
共 50 条
  • [1] On Agglomerative Hierarchical Clustering Using Clusterwise Tolerance Based Pairwise Constraints
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2012, 16 (01) : 174 - 179
  • [2] Semi-supervised Agglomerative Hierarchical Clustering with Ward Method Using Clusterwise Tolerance
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, MDAI 2011, 2011, 6820 : 103 - +
  • [3] Semi-Supervised Agglomerative Hierarchical Clustering Algorithms with Pairwise Constraints
    Miyamoto, Sadaaki
    Terami, Akihisa
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [4] Comparison of Semi-Supervised Hierarchical Clustering Using Clusterwise Tolerance
    Hamasuna, Yukihiro
    Endo, Yasunori
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2012, 16 (07) : 819 - 824
  • [5] Semi-supervised Clustering with Pairwise and Size Constraints
    Zhang, Shaohong
    Wong, Hau-San
    Xie, Dongqing
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 2450 - 2457
  • [6] Semi-supervised DenPeak Clustering with Pairwise Constraints
    Ren, Yazhou
    Hu, Xiaohui
    Shi, Ke
    Yu, Guoxian
    Yao, Dezhong
    Xu, Zenglin
    PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2018, 11012 : 837 - 850
  • [7] Active semi-supervised spectral clustering based on pairwise constraints
    Wang, Na
    Li, Xia
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2010, 38 (01): : 172 - 176
  • [8] Semi-Supervised Maximum Margin Clustering with Pairwise Constraints
    Zeng, Hong
    Cheung, Yiu-Ming
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2012, 24 (05) : 926 - 939
  • [9] Effective semi-supervised graph clustering with pairwise constraints
    Chen, Jingwei
    Xie, Shiyu
    Yang, Hui
    Nie, Feiping
    INFORMATION SCIENCES, 2024, 681
  • [10] Deep semi-supervised clustering based on pairwise constraints and sample similarity
    Qin, Xiao
    Yuan, Changan
    Jiang, Jianhui
    Chen, Long
    PATTERN RECOGNITION LETTERS, 2024, 178 : 1 - 6