Semi-supervised Agglomerative Hierarchical Clustering Using Clusterwise Tolerance Based Pairwise Constraints

被引:0
|
作者
Hamasuna, Yukihiro [1 ]
Endo, Yasunori [1 ]
Miyamoto, Sadaaki [1 ]
机构
[1] Univ Tsukuba, Fac Syst & Informat Engn, Dept Risk Engn, Tsukuba, Ibaraki 3058573, Japan
关键词
semi-supervised clustering; agglomerative hierarchical clustering; centroid method; clusterwise tolerance; pairwise constraints;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, semi-supervised clustering has been remarked and discussed in many researches. In semi-supervised clustering, pairwise constraints, that is, must-link and cannot-link are frequently used in order to improve clustering results by using prior knowledges or informations. In this paper, we will propose a clusterwise tolerance based pairwise constraint. In addition, we will propose semi-supervised agglomerative hierarchical clustering algorithms with centroid method based on it. Moreover, we will show the effectiveness of proposed method through numerical examples.
引用
收藏
页码:152 / 162
页数:11
相关论文
共 50 条
  • [41] TextCSN: a Semi-Supervised Approach for Text Clustering Using Pairwise Constraints and Convolutional Siamese Network
    Vilhagra, Lucas Akayama
    Fernandes, Eraldo Rezende
    Nogueira, Bruno Magalhaes
    PROCEEDINGS OF THE 35TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING (SAC'20), 2020, : 1135 - 1142
  • [42] Semi-supervised clustering with inaccurate pairwise annotations
    Gribel, Daniel
    Gendreau, Michel
    Vidal, Thibaut
    INFORMATION SCIENCES, 2022, 607 : 441 - 457
  • [43] AN EFFECTIVE SEMI-SUPERVISED CLUSTERING FRAMEWORK INTEGRATING PAIRWISE CONSTRAINTS AND ATTRIBUTE PREFERENCES
    Wang, Jinlong
    Wu, Shunyao
    Wen, Can
    Li, Gang
    COMPUTING AND INFORMATICS, 2012, 31 (03) : 597 - 612
  • [44] On semi-supervised fuzzy c-means clustering for data with clusterwise tolerance by opposite criteria
    Hamasuna, Yukihiro
    Endo, Yasunori
    SOFT COMPUTING, 2013, 17 (01) : 71 - 81
  • [45] Deep multi-view semi-supervised clustering with sample pairwise constraints
    Chen, Rui
    Tang, Yongqiang
    Zhang, Wensheng
    Feng, Wenlong
    NEUROCOMPUTING, 2022, 500 : 832 - 845
  • [46] Pairwise constraints-based semi-supervised fuzzy clustering with multi-manifold regularization
    Wang, Yingxu
    Chen, Long
    Zhou, Jin
    Li, Tianjun
    Yu, Yufeng
    INFORMATION SCIENCES, 2023, 638
  • [47] On semi-supervised fuzzy c-means clustering for data with clusterwise tolerance by opposite criteria
    Yukihiro Hamasuna
    Yasunori Endo
    Soft Computing, 2013, 17 : 71 - 81
  • [48] A new semi-supervised hierarchical active clustering based on ranking constraints for analysts groupization
    Ben Ahmed, Eya
    Nabli, Ahlem
    Gargouri, Faiez
    APPLIED INTELLIGENCE, 2013, 39 (02) : 236 - 250
  • [49] A new semi-supervised hierarchical active clustering based on ranking constraints for analysts groupization
    Eya Ben Ahmed
    Ahlem Nabli
    Faiez Gargouri
    Applied Intelligence, 2013, 39 : 236 - 250
  • [50] Semi-supervised clustering with two types of background knowledge: Fusing pairwise constraints and monotonicity constraints
    Gonzalez-Almagro, German
    Sanchez-Bermejo, Pablo
    Suarez, Juan Luis
    Cano, Jose-Ramon
    Garcia, Salvador
    INFORMATION FUSION, 2024, 102