Semi-Supervised Agglomerative Hierarchical Clustering Algorithms with Pairwise Constraints

被引:0
|
作者
Miyamoto, Sadaaki [1 ]
Terami, Akihisa [1 ]
机构
[1] Univ Tsukuba, Dept Risk Engn, Tsukuba, Ibaraki 3058573, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently semi-supervised clustering has been studied by many researchers, but there are no extensive studies using different types of algorithms. In this paper we consider agglomerative hierarchical algorithms with pairwise constraints. The constraints are directly introduced to the single linkage which is equivalent to the transitive closure algorithm, while the centroid method and the Ward methods need kernelization of the algorithms. Simple numerical examples are shown to see how the constraints work.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Deep multi-view semi-supervised clustering with sample pairwise constraints
    Chen, Rui
    Tang, Yongqiang
    Zhang, Wensheng
    Feng, Wenlong
    [J]. NEUROCOMPUTING, 2022, 500 : 832 - 845
  • [32] SEMI-SUPERVISED K-WAY SPECTRAL CLUSTERING USING PAIRWISE CONSTRAINTS
    Wacquet, Guillaume
    Hebert, Pierre-Alexandre
    Poisson, Emilie Caillault
    Hamad, Denis
    [J]. NCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NEURAL COMPUTATION THEORY AND APPLICATIONS, 2011, : 72 - 81
  • [33] Face Clustering Using Semi-supervised Neighborhood Preserving Embedding with Pairwise Constraints
    Wang, Na
    Li, Xia
    [J]. ICIEA: 2009 4TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-6, 2009, : 1564 - 1568
  • [34] Semi-supervised clustering with two types of background knowledge: Fusing pairwise constraints and monotonicity constraints
    Gonzalez-Almagro, German
    Sanchez-Bermejo, Pablo
    Suarez, Juan Luis
    Cano, Jose-Ramon
    Garcia, Salvador
    [J]. INFORMATION FUSION, 2024, 102
  • [35] On Agglomerative Hierarchical Clustering Using Clusterwise Tolerance Based Pairwise Constraints
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    [J]. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2012, 16 (01) : 174 - 179
  • [36] Metric learning for semi-supervised clustering using pairwise constraints and the geometrical structure of data
    Baghshah, Mahdieh Soleymani
    Shouraki, Saeed Bagheri
    [J]. INTELLIGENT DATA ANALYSIS, 2009, 13 (06) : 887 - 899
  • [37] A Lagrangian-based score for assessing the quality of pairwise constraints in semi-supervised clustering
    Rodrigo Randel
    Daniel Aloise
    Simon J. Blanchard
    Alain Hertz
    [J]. Data Mining and Knowledge Discovery, 2021, 35 : 2341 - 2368
  • [38] Fairness, Semi-Supervised Learning, and More: A General Framework for Clustering with Stochastic Pairwise Constraints
    Brubach, Brian
    Chakrabarti, Darshan
    Dickerson, John P.
    Srinivasan, Aravind
    Tsepenekas, Leonidas
    [J]. THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 6822 - 6830
  • [39] A Lagrangian-based score for assessing the quality of pairwise constraints in semi-supervised clustering
    Randel, Rodrigo
    Aloise, Daniel
    Blanchard, Simon J.
    Hertz, Alain
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 35 (06) : 2341 - 2368
  • [40] Semi-supervised Latent Block Model with pairwise constraints
    Riverain, Paul
    Fossier, Simon
    Nadif, Mohamed
    [J]. MACHINE LEARNING, 2022, 111 (05) : 1739 - 1764