Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems

被引:90
|
作者
Ern, Alexandre [1 ]
Stephansen, Annette F. [1 ,2 ,3 ]
Vohralik, Martin [4 ,5 ]
机构
[1] Univ Paris Est, CERMICS, Ecole Ponts, F-77455 Marne La Vallee 2, France
[2] ANDRA, F-92298 Chatenay Malabry, France
[3] Ctr Integrated Petr Res, N-5007 Bergen, Norway
[4] Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[5] CNRS, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
关键词
Convection-diffusion-reaction equation; Discontinuous Galerkin methods; A posteriori error estimates; Robustness; Dominant convection; Dominant reaction; Inhomogeneous and anisotropic diffusion; FINITE-ELEMENT APPROXIMATION; LOCALLY CONSERVATIVE METHODS; ELLIPTIC PROBLEMS; FLUX RECONSTRUCTION; EQUATIONS; ADVECTION;
D O I
10.1016/j.cam.2009.12.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and study a posteriori error estimates for convection-diffusion-reaction problems with inhomogeneous and anisotropic diffusion approximated by weighted interior-penalty discontinuous Galerkin methods. Our twofold objective is to derive estimates without undetermined constants and to analyze carefully the robustness of the estimates in singularly perturbed regimes due to dominant convection or reaction. We first derive locally computable estimates for the error measured in the energy (semi)norm. These estimates are evaluated using H(div, Omega)-conforming diffusive and convective flux reconstructions, thereby extending the previous work on pure diffusion problems. The resulting estimates are semi-robust in the sense that local lower error bounds can be derived using suitable cutoff functions of the local Peclet and Damkohler numbers. Fully robust estimates are obtained for the error measured in an augmented norm consisting of the energy (semi)norm, a dual norm of the skew-symmetric part of the differential operator, and a suitable contribution of the interelement jumps of the discrete solution. Numerical experiments are presented to illustrate the theoretical results. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:114 / 130
页数:17
相关论文
共 50 条
  • [1] A posteriori error estimator based on gradient recovery by averaging for convection-diffusion-reaction problems approximated by discontinuous Galerkin methods
    Creuse, Emmanuel
    Nicaise, Serge
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (01) : 212 - 241
  • [2] Preconditioned discontinuous Galerkin method and convection-diffusion-reaction problems with guaranteed bounds to resulting spectra
    Gaynutdinova, Liya
    Ladecky, Martin
    Pultarova, Ivana
    Vlasak, Miloslav
    Zeman, Jan
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2024, 31 (04)
  • [3] A multiscale discontinuous Galerkin method for convection-diffusion-reaction problems
    Kim, Mi-Young
    Wheeler, Mary F.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (12) : 2251 - 2261
  • [4] A Posteriori Error Estimates for Unsteady Convection-Diffusion-Reaction Problems and the Finite Volume Method
    Chalhoub, Nancy
    Ern, Alexandre
    Sayah, Tony
    Vohralik, Martin
    [J]. FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 215 - +
  • [5] Equilibration a Posteriori Error Estimation for Convection-Diffusion-Reaction Problems
    Eigel, M.
    Merdon, C.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2016, 67 (02) : 747 - 768
  • [6] Guaranteed and Fully Robust a posteriori Error Estimates for Conforming Discretizations of Diffusion Problems with Discontinuous Coefficients
    Vohralik, Martin
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2011, 46 (03) : 397 - 438
  • [7] Guaranteed and Fully Robust a posteriori Error Estimates for Conforming Discretizations of Diffusion Problems with Discontinuous Coefficients
    Martin Vohralík
    [J]. Journal of Scientific Computing, 2011, 46 : 397 - 438
  • [8] GUARANTEED AND ROBUST A POSTERIORI ERROR ESTIMATES FOR SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEMS
    Cheddadi, Ibrahim
    Fucik, Radek
    Prieto, Mariana I.
    Vohralik, Martin
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (05): : 867 - 888
  • [9] Guaranteed A Posteriori Error Estimates for a Staggered Discontinuous Galerkin Method
    Chung, Eric T.
    Park, Eun-Jae
    Zhao, Lina
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (02) : 1079 - 1101
  • [10] Guaranteed A Posteriori Error Estimates for a Staggered Discontinuous Galerkin Method
    Eric T. Chung
    Eun-Jae Park
    Lina Zhao
    [J]. Journal of Scientific Computing, 2018, 75 : 1079 - 1101