A posteriori error estimator based on gradient recovery by averaging for convection-diffusion-reaction problems approximated by discontinuous Galerkin methods

被引:7
|
作者
Creuse, Emmanuel [1 ,2 ]
Nicaise, Serge [3 ]
机构
[1] Univ Lille 1, Lab Paul Painleve, UMR 8524, F-59655 Villeneuve Dascq, France
[2] Univ Lille 1, INRIA Lille Nord Europe, F-59655 Villeneuve Dascq, France
[3] Univ Valenciennes & Hainaut Cambresis, Lab Math & Leursapplicat Valencienne, FR CNRS 2956, Inst Sci & Tech Valenciennes, F-59313 Valenciennes 9, France
关键词
convection-diffusion-reaction problems; a posteriori estimator; discontinuous Galerkin finite elements; IRREGULAR MESHES; ELEMENT; DISCRETIZATIONS;
D O I
10.1093/imanum/drr052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider some (anisotropic and piecewise constant) convection-diffusion-reaction problems in domains of R-2, approximated by a discontinuous Galerkin method with polynomials of any degree. We propose two a posteriori error estimators based on gradient recovery by averaging. It is shown that these estimators give rise to an upper bound where the constant is explicitly known up to some additional terms that guarantee reliability. The lower bound is also established, one being robust when the convection term (or the reaction term) becomes dominant. Moreover, the estimator is asymptotically exact when the recovered gradient is superconvergent. The reliability and efficiency of the proposed estimators are confirmed by some numerical tests.
引用
收藏
页码:212 / 241
页数:30
相关论文
共 50 条
  • [1] A posteriori error estimator based on gradient recovery by averaging for discontinuous Galerkin methods
    Creuse, Emmanuel
    Nicaise, Serge
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (10) : 2903 - 2915
  • [2] Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems
    Ern, Alexandre
    Stephansen, Annette F.
    Vohralik, Martin
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (01) : 114 - 130
  • [3] A robust a-posteriori error estimator for discontinuous Galerkin methods for convection-diffusion equations
    Schoetzau, Dominik
    Zhu, Liang
    [J]. APPLIED NUMERICAL MATHEMATICS, 2009, 59 (09) : 2236 - 2255
  • [4] Gradient recovery based a posteriori error estimator for the adaptive direct discontinuous Galerkin method
    Cao, Huihui
    Huang, Yunqing
    Yi, Nianyu
    [J]. CALCOLO, 2023, 60 (01)
  • [5] Gradient recovery based a posteriori error estimator for the adaptive direct discontinuous Galerkin method
    Huihui Cao
    Yunqing Huang
    Nianyu Yi
    [J]. Calcolo, 2023, 60
  • [6] A multiscale discontinuous Galerkin method for convection-diffusion-reaction problems
    Kim, Mi-Young
    Wheeler, Mary F.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (12) : 2251 - 2261
  • [7] Equilibration a Posteriori Error Estimation for Convection-Diffusion-Reaction Problems
    Eigel, M.
    Merdon, C.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2016, 67 (02) : 747 - 768
  • [8] Stability of Nonlinear Convection-Diffusion-Reaction Systems in Discontinuous Galerkin Methods
    Michoski, C.
    Alexanderian, A.
    Paillet, C.
    Kubatko, E. J.
    Dawson, C.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (02) : 516 - 550
  • [9] An a posteriori error bound for discontinuous Galerkin approximations of convection-diffusion problems
    Georgoulis, Emmanuil H.
    Hall, Edward
    Makridakis, Charalambos
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (01) : 34 - 60
  • [10] COMPUTATIONAL ASPECTS OF THE MULTISCALE DISCONTINUOUS GALERKIN METHOD FOR CONVECTION-DIFFUSION-REACTION PROBLEMS
    Jeong, ShinJa
    Kim, Mi-Young
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (02): : 1991 - 2006