Effects of Biomass Type, Blend Composition, and Co-pyrolysis Temperature on Hybrid Coal Quality

被引:1
|
作者
Sasongko, Dwiwahju [1 ,2 ]
Wulandari, Winny [1 ,2 ]
Rubani, Inga Shaffira [1 ,2 ]
Rusydiansyah, Rifqi [1 ]
机构
[1] Inst Teknol Bandung, Fac Ind Technol, Dept Chem Engn, Bandung 40132, Indonesia
[2] Inst Teknol Bandung, Res Ctr New & Renewable Energy, Bandung 40132, Indonesia
关键词
hybrid coal; co-pyrolysis; sub-bituminous; mahogany sawdust; rice husk;
D O I
10.1063/1.4974430
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An experimental study on co-pyrolysis of coal with biomass wastes to produce hybrid coal was conducted to investigate the effects of important process variables, namely biomass type (rice husk and sawdust), blend composition, and co-pyrolysis temperature on the quality of hybrid coal. The experiments were carried out using a vertical tubular furnace equipped with temperature controller to maintain the co-pyrolysis reactor at a given temperature. Nitrogen gas was introduced into the furnace to create an inert environment preventing the sample from burning. A known mass of solid sample consisting of manually granulated blend of coal and biomass with binder in spherical shape was contained in a basket made of stainless sieve. After a given residence time, the sample was taken from the furnace. The blend sample prior to experiment and the produced hybrid coal were then characterized for its proximate analysis, ultimate analysis and calorific value. Experimental findings suggested that by increasing co-pyrolysis temperature from 200 to 400 degrees C, the calorific value of hybrid coal will increase by 14.5-17.7% to be 5585-7060 kcal/kg. It was also showed that 30% increase in the biomass content in the fuel blend would produce a hybrid coal that emitting up to 25.9% less in CO2 when used for combustion, although its calorific value decreased down to 8% compared to the biomass blend. It is shown that hybrid coal obtained from this study is comparable in calorific value to bituminous coal, thus suitable for power plant while being more environmentally friendly.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Co-pyrolysis of polypropylene and biomass
    Ye, J. L.
    Cao, Q.
    Zhao, Y. S.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2008, 30 (18) : 1689 - 1697
  • [32] Study on co-pyrolysis and co-gasification of hydrothermal carbonized biomass and coal
    He Q.
    Cheng C.
    Gong Y.
    Ding L.
    Yu G.-S.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2022, 50 (06): : 664 - 673
  • [33] Catalytic co-pyrolysis of woody biomass with polypropylene: Effects of Korean loess hybrid catalysts and pyrolysis temperatures
    Jin, Xuanjun
    Choi, Joon Weon
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2024, 181
  • [34] Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor
    Park, Dong Kyoo
    Kim, Sang Done
    Lee, See Hoon
    Lee, Jae Goo
    BIORESOURCE TECHNOLOGY, 2010, 101 (15) : 6151 - 6156
  • [35] Machine learning-enabled analysis of product distribution and composition in biomass-coal co-pyrolysis
    Shafizadeh, Alireza
    Shahbeik, Hossein
    Rafiee, Shahin
    Fardi, Zahra
    Karimi, Keikhosro
    Peng, Wanxi
    Chen, Xiangmeng
    Tabatabaei, Meisam
    Aghbashlo, Mortaza
    FUEL, 2024, 355
  • [36] Investigating the release behavior of biomass and coal during the co-pyrolysis process
    Li, Shuaidan
    Li, Jiazhu
    Xu, Jie
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (70) : 34652 - 34662
  • [37] Fast co-pyrolysis of coal and biomass in a fluidized-bed reactor
    Jianfei Wang
    Qixuan Yan
    Jiantao Zhao
    Zhiqing Wang
    Jiejie Huang
    Songping Gao
    Shuangshuang Song
    Yitian Fang
    Journal of Thermal Analysis and Calorimetry, 2014, 118 : 1663 - 1673
  • [38] Investigation progress on the interaction between coal and biomass during co-pyrolysis
    Zhang Y.
    Wang J.
    Bai Y.
    Song X.
    Su W.
    Yu G.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40 (07): : 3693 - 3702
  • [39] Co-pyrolysis of torrefied biomass and coal: Effect of pressure on synergistic reactions
    Gouws, Saartjie M.
    Carrier, Marion
    Bunt, John R.
    Neomagus, Hein W.J.P.
    Journal of Analytical and Applied Pyrolysis, 2022, 161
  • [40] Co-pyrolysis Behavior of Coal and Biomass: Synergistic Effect and Kinetic Analysis
    Liu, Na
    Huang, He
    Huang, Xueli
    Li, Rui
    Feng, Jun
    Wu, Yulong
    ACS OMEGA, 2024, 9 (29): : 31803 - 31813