Effects of Biomass Type, Blend Composition, and Co-pyrolysis Temperature on Hybrid Coal Quality

被引:1
|
作者
Sasongko, Dwiwahju [1 ,2 ]
Wulandari, Winny [1 ,2 ]
Rubani, Inga Shaffira [1 ,2 ]
Rusydiansyah, Rifqi [1 ]
机构
[1] Inst Teknol Bandung, Fac Ind Technol, Dept Chem Engn, Bandung 40132, Indonesia
[2] Inst Teknol Bandung, Res Ctr New & Renewable Energy, Bandung 40132, Indonesia
关键词
hybrid coal; co-pyrolysis; sub-bituminous; mahogany sawdust; rice husk;
D O I
10.1063/1.4974430
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An experimental study on co-pyrolysis of coal with biomass wastes to produce hybrid coal was conducted to investigate the effects of important process variables, namely biomass type (rice husk and sawdust), blend composition, and co-pyrolysis temperature on the quality of hybrid coal. The experiments were carried out using a vertical tubular furnace equipped with temperature controller to maintain the co-pyrolysis reactor at a given temperature. Nitrogen gas was introduced into the furnace to create an inert environment preventing the sample from burning. A known mass of solid sample consisting of manually granulated blend of coal and biomass with binder in spherical shape was contained in a basket made of stainless sieve. After a given residence time, the sample was taken from the furnace. The blend sample prior to experiment and the produced hybrid coal were then characterized for its proximate analysis, ultimate analysis and calorific value. Experimental findings suggested that by increasing co-pyrolysis temperature from 200 to 400 degrees C, the calorific value of hybrid coal will increase by 14.5-17.7% to be 5585-7060 kcal/kg. It was also showed that 30% increase in the biomass content in the fuel blend would produce a hybrid coal that emitting up to 25.9% less in CO2 when used for combustion, although its calorific value decreased down to 8% compared to the biomass blend. It is shown that hybrid coal obtained from this study is comparable in calorific value to bituminous coal, thus suitable for power plant while being more environmentally friendly.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Product characteristics for fast co-pyrolysis of bituminous coal and biomass
    State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan
    030001, China
    不详
    100049, China
    不详
    274015, China
    Ranliao Huaxue Xuebao J. Fuel Chem. Technol., 6 (641-648):
  • [22] Product distributions from isothermal co-pyrolysis of coal and biomass
    Weiland, Nathan T.
    Means, Nicholas C.
    Morreale, Bryan D.
    FUEL, 2012, 94 (01) : 563 - 570
  • [23] Investigation of co-pyrolysis characteristics of modified coal gangue and biomass
    Huo, Xinguang
    Jia, Xiangru
    Song, Changzhong
    Hao, Songtao
    Zhang, Di
    Ding, Yaqian
    Liu, Shaoqing
    Zhang, Wenshuang
    Thermochimica Acta, 2021, 705
  • [24] Process Integration of a Polygeneration Plant with Biomass/Coal Co-pyrolysis
    Atsonios, K.
    Kougioumtzis, M. A.
    Grammelis, P.
    Kakaras, E.
    ENERGY & FUELS, 2017, 31 (12) : 14408 - 14422
  • [25] Co-Pyrolysis Synergistic Effect of HSW Coal and Biomass in Ningdong
    Fan, Hui
    Ren, Qian
    Feng, Caiyun
    Li, Ping
    Guo, Qingjie
    Ma, Qingxiang
    Shiyou Xuebao, Shiyou Jiagong/Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35 (05): : 981 - 987
  • [26] Investigation of co-pyrolysis characteristics of modified coal gangue and biomass
    Huo, Xinguang
    Jia, Xiangru
    Song, Changzhong
    Hao, Songtao
    Zhang, Di
    Ding, Yaqian
    Liu, Shaoqing
    Zhang, Wenshuang
    THERMOCHIMICA ACTA, 2021, 705
  • [27] Study on Co-Pyrolysis of Coal and Biomass and Process Simulation Optimization
    Wang, Biao
    Liu, Na
    Wang, Shanshan
    Li, Xiaoxian
    Li, Rui
    Wu, Yulong
    SUSTAINABILITY, 2023, 15 (21)
  • [28] Pyrolysis Characteristics and Kinetics of Coal-Biomass Blends during Co-Pyrolysis
    Chen, Xiye
    Liu, Li
    Zhang, Linyao
    Zhao, Yan
    Qiu, Penghua
    ENERGY & FUELS, 2019, 33 (02) : 1267 - 1278
  • [29] Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal
    Wu, Zhiqiang
    Wang, Shuzhong
    Zhao, Jun
    Chen, Lin
    Meng, Haiyu
    BIORESOURCE TECHNOLOGY, 2014, 169 : 220 - 228
  • [30] Effects of alkali and alkaline earth metals in biomass on co-pyrolysis characteristics and product distribution of coal and biomass
    Liu, Na
    Huang, He
    Feng, Jun
    Li, Rui
    Huang, Xueli
    Wu, Yulong
    FUEL, 2025, 389