Gas adsorption properties of highly porous metal-organic frameworks containing functionalized naphthalene dicarboxylate linkers

被引:80
|
作者
Sim, Jaeung [1 ]
Yim, Haneul [1 ]
Ko, Nakeun [1 ]
Choi, Sang Beom [1 ]
Oh, Youjin [1 ]
Park, Hye Jeong [1 ]
Park, SangYoun [2 ]
Kim, Jaheon [1 ]
机构
[1] Soongsil Univ, Dept Chem, Seoul 156743, South Korea
[2] Soongsil Univ, Sch Syst Biomed Sci, Seoul 156743, South Korea
关键词
CARBON-DIOXIDE CAPTURE; ZEOLITIC IMIDAZOLATE FRAMEWORKS; CO2; ADSORPTION; COORDINATION POLYMERS; MOLECULAR SIMULATION; PORE-SIZE; SERIES; MOFS; SEPARATION; SORPTION;
D O I
10.1039/c4dt02300e
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Three functionalized metal-organic frameworks (MOFs), MOF-205-NH2, MOF-205-NO2, and MOF-205OBn, formulated as Zn4O(BTB)(4/3)(L), where BTB is benzene-1,3,5-tribenzoate and L is 1-aminonaphthalene- 3,7-dicarboxylate (NDC-NH2), 1-nitronaphthalene-3,7-dicarboxylate (NDC-NO2) or 1,5-dibenzyloxy-2,6-naphthalenedicarboxylate (NDC-(OBn)(2)), were synthesized and their gas (H-2, CO2, or CH4) adsorption properties were compared to those of the un-functionalized, parent MOF-205. Ordered structural models for MOF-205 and its derivatives were built based on the crystal structures and were subsequently used for predicting porosity properties. Although the Brunauer-Emmett-Teller (BET) surface areas of the three MOF-205 derivatives were reduced (MOF-205, 4460; MOF-205-NH2, 4330; MOF-205-NO2, 3980; MOF-205-OBn, 3470 m(2) g(-1)), all three derivatives were shown to have enhanced H-2 adsorption capacities at 77 K and CO2 uptakes at 253, 273, and 298 K respectively at 1 bar in comparison with MOF-205. The results indicate the following trend in H2 adsorption: MOF-205 < MOF-205-NO2 < MOF-205-NH2 < MOF-205-OBn. MOF-205-OBn showed good ideal adsorbed solution theory (IAST) selectivity values of 6.5 for CO2/N-2 (15/85 in v/v) and 2.7 for CO2/CH4 (50/50 in v/v) at 298 K. Despite the large reduction (-22%) in the surface area, MOF-205-OBn displayed comparable total volumetric CO2 (at 48 bar) and CH4 (at 35 bar) storage capacities with those of MOF-205 at 298 K: MOF-205-OBn, 305 (CO2) and 112 (CH4) cm(3) cm(-3), and for MOF-205, 307 (CO2) and 120 (CH4) cm(3) cm(-3), respectively.
引用
收藏
页码:18017 / 18024
页数:8
相关论文
共 50 条
  • [21] Highly porous and stable metal-organic frameworks: Structure design and sorption properties
    Eddaoudi, M
    Li, HL
    Yaghi, OM
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (07) : 1391 - 1397
  • [22] Porous Metal-Organic Frameworks for gas separation and purification
    Chen, Banglin
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [23] Hierarchical modeling of ammonia adsorption in functionalized metal-organic frameworks
    Yu, Decai
    Ghosh, Pritha
    Snurr, Randall Q.
    [J]. DALTON TRANSACTIONS, 2012, 41 (14) : 3962 - 3973
  • [24] Peptide linkers soften metal-organic frameworks
    Liu, Tianyu
    [J]. MRS BULLETIN, 2019, 44 (05) : 328 - 328
  • [25] Selective gas adsorption and separation in metal-organic frameworks
    Li, Jian-Rong
    Kuppler, Ryan J.
    Zhou, Hong-Cai
    [J]. CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) : 1477 - 1504
  • [26] Cooperative adsorption and gas separations in metal-organic frameworks
    McDonald, Thomas
    Reed, Douglas
    Siegelman, Rebecca
    Oktawiec, Julia
    Jiang, Henry
    Kim, Eugene
    Jaramillo, David
    Colwell, Kristen
    Torres-Gavosto, Rodolfo
    Xiao, Dianne
    Gonzalez, Miguel
    Bachman, Jonathan
    Herm, Zoey
    Taylor, Mercedes
    Darago, Lucy
    Mason, Jarad
    Bloch, Eric
    Wiers, Brian
    Zadrozny, Joseph
    Gygi, David
    Mao, Victor
    Dinakar, Bhavish
    Porter-Zasada, Leo
    Keitz, Benjamin
    McGuirk, C. Michael
    Milner, Phillip
    Martell, Jeffrey
    Forse, Alexander
    Runcevski, Tomce
    Demessence, Aude
    Queen, Wendy
    Murray, Leslie
    D'Alessandro, Deanna
    Dinca, Mircea
    Long, Jeffrey
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [27] Metal-organic frameworks based on multicarboxylate linkers
    Ghasempour, Hosein
    Wang, Kun-Yu
    Powell, Joshua A.
    ZareKarizi, Farnoosh
    Lv, Xiu-Liang
    Morsali, Ali
    Zhou, Hong-Cai
    [J]. COORDINATION CHEMISTRY REVIEWS, 2021, 426
  • [28] Orthogonalization of Polyaryl Linkers as a Route to More Porous Phosphonate Metal-Organic Frameworks
    Glavinovic, Martin
    Perras, Justin H.
    Gelfand, Benjamin S.
    Lin, Jian-Bin
    Shimizu, George K. H.
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (31)
  • [29] Molecular simulation of gas adsorption in metal-organic frameworks
    Karuppasamy, Gopalsamy
    Desgranges, Caroline
    Delhommelle, Jerome
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [30] Boron Trifluoride Gas Adsorption in Metal-Organic Frameworks
    Siu, Paul W.
    Siefried, John P.
    Weston, Mitchell H.
    Fuller, Patrick E.
    Morris, William
    Murdock, Christopher R.
    Hoover, William J.
    Richardson, Rachelle K.
    Rodriguez, Stephanie
    Farha, Omar K.
    [J]. INORGANIC CHEMISTRY, 2016, 55 (23) : 12110 - 12113