Efficient Representation Learning for High-Dimensional Imbalance Data

被引:0
|
作者
Mirza, Bilal [1 ]
Kok, Stanley [3 ]
Lin, Zhiping [2 ]
Yeo, Yong Kiang [2 ]
Lai, Xiaoping [4 ]
Cao, Jiuwen [4 ]
Sepulveda, Jose [1 ]
机构
[1] Singapore Polytech, Dept Technol Innovat & Enterprise, Singapore 139651, Singapore
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[3] Rakuten Inst Technol, Singapore 048946, Singapore
[4] Hangzhou Dianzi Univ, Key Lab IOT & Informat Fus Technol Zhejiang, Hangzhou 310018, Zhejiang, Peoples R China
关键词
big data; class imbalance; extreme learning machine; multi-hidden-layer network; representation learning; MACHINE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a multi-layer weighted extreme learning machine (ML-WELM) is proposed for high-dimensional datasets with class imbalance. The recently proposed single hidden layer WELM method effectively tackles class imbalance but it may not capture high level abstractions in image datasets. ML-WELM provides efficient representation learning for big image data using multiple hidden layers and at the same time tackles the class imbalance problem using cost-sensitive weighting. Weighted ELM auto-encoder (WELM-AE) is also proposed for layer-by-layer class imbalance feature learning in ML-WELM. We used four imbalance image datasets in our experiments; ML-WELM performs better than the WELM method on all of them.
引用
收藏
页码:511 / 515
页数:5
相关论文
共 50 条
  • [41] Learning from label proportions on high-dimensional data
    Shi, Yong
    Liu, Jiabin
    Qi, Zhiquan
    Wang, Bo
    NEURAL NETWORKS, 2018, 103 : 9 - 18
  • [42] Efficient Data Structures for Density Estimation for Large High-Dimensional Data
    Majdara, Aref
    Nooshabadi, Saeid
    2017 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2017,
  • [43] High-dimensional data
    Geubbelmans, Melvin
    Rousseau, Axel-Jan
    Valkenborg, Dirk
    Burzykowski, Tomasz
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2023, 164 (03) : 453 - 456
  • [44] High-dimensional data
    Amaratunga, Dhammika
    Cabrera, Javier
    JOURNAL OF THE NATIONAL SCIENCE FOUNDATION OF SRI LANKA, 2016, 44 (01): : 3 - 9
  • [45] Adaptively-Accelerated Parallel Stochastic Gradient Descent for High-Dimensional and Incomplete Data Representation Learning
    Qin, Wen
    Luo, Xin
    Zhou, Mengchu
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (01) : 92 - 107
  • [46] Efficient Private Empirical Risk Minimization for High-dimensional Learning
    Kasiviswanathan, Shiva Prasad
    Jin, Hongxia
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [47] Memory-Efficient Learning for High-Dimensional MRI Reconstruction
    Wang, Ke
    Kellman, Michael
    Sandino, Christopher M.
    Zhang, Kevin
    Vasanawala, Shreyas S.
    Tamir, Jonathan, I
    Yu, Stella X.
    Lustig, Michael
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT VI, 2021, 12906 : 461 - 470
  • [49] Spectral clustering of high-dimensional data exploiting sparse representation vectors
    Wu, Sen
    Feng, Xiaodong
    Zhou, Wenjun
    NEUROCOMPUTING, 2014, 135 : 229 - 239
  • [50] Efficient Parallel Skyline Query Processing for High-Dimensional Data
    Tang, Mingjie
    Yu, Yongyang
    Aref, Walid G.
    Malluhi, Qutaibah M.
    Ouzzani, Mourad
    2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2019), 2019, : 2113 - 2114