Efficient Representation Learning for High-Dimensional Imbalance Data

被引:0
|
作者
Mirza, Bilal [1 ]
Kok, Stanley [3 ]
Lin, Zhiping [2 ]
Yeo, Yong Kiang [2 ]
Lai, Xiaoping [4 ]
Cao, Jiuwen [4 ]
Sepulveda, Jose [1 ]
机构
[1] Singapore Polytech, Dept Technol Innovat & Enterprise, Singapore 139651, Singapore
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[3] Rakuten Inst Technol, Singapore 048946, Singapore
[4] Hangzhou Dianzi Univ, Key Lab IOT & Informat Fus Technol Zhejiang, Hangzhou 310018, Zhejiang, Peoples R China
关键词
big data; class imbalance; extreme learning machine; multi-hidden-layer network; representation learning; MACHINE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a multi-layer weighted extreme learning machine (ML-WELM) is proposed for high-dimensional datasets with class imbalance. The recently proposed single hidden layer WELM method effectively tackles class imbalance but it may not capture high level abstractions in image datasets. ML-WELM provides efficient representation learning for big image data using multiple hidden layers and at the same time tackles the class imbalance problem using cost-sensitive weighting. Weighted ELM auto-encoder (WELM-AE) is also proposed for layer-by-layer class imbalance feature learning in ML-WELM. We used four imbalance image datasets in our experiments; ML-WELM performs better than the WELM method on all of them.
引用
收藏
页码:511 / 515
页数:5
相关论文
共 50 条
  • [31] Efficient global monitoring statistics for high-dimensional data
    Li, Jun
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2020, 36 (01) : 18 - 32
  • [32] An efficient clustering method for high-dimensional data mining
    Chang, JW
    Kim, YK
    ADVANCES IN ARTIFICIAL INTELLIGENCE - SBIA 2004, 2004, 3171 : 276 - 285
  • [33] EFFICIENT BINARY CODES FOR EXTREMELY HIGH-DIMENSIONAL DATA
    Lin, Tsung-Yu
    Liu, Tyng-Luh
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 2212 - 2216
  • [34] Flexible High-Dimensional Unsupervised Learning with Missing Data
    Wei, Yuhong
    Tang, Yang
    McNicholas, Paul D.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (03) : 610 - 621
  • [35] Online Markov Blanket Learning for High-Dimensional Data
    Zhaolong Ling
    Bo Li
    Yiwen Zhang
    Ying Li
    Haifeng Ling
    Applied Intelligence, 2023, 53 : 5977 - 5997
  • [36] Scalable collaborative targeted learning for high-dimensional data
    Ju, Cheng
    Gruber, Susan
    Lendle, Samuel D.
    Chambaz, Antoine
    Franklin, Jessica M.
    Wyss, Richard
    Schneeweiss, Sebastian
    van der Laan, Mark J.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (02) : 532 - 554
  • [37] Learning in high-dimensional multimedia data: the state of the art
    Gao, Lianli
    Song, Jingkuan
    Liu, Xingyi
    Shao, Junming
    Liu, Jiajun
    Shao, Jie
    MULTIMEDIA SYSTEMS, 2017, 23 (03) : 303 - 313
  • [38] Learning in high-dimensional multimedia data: the state of the art
    Lianli Gao
    Jingkuan Song
    Xingyi Liu
    Junming Shao
    Jiajun Liu
    Jie Shao
    Multimedia Systems, 2017, 23 : 303 - 313
  • [39] Online Markov Blanket Learning for High-Dimensional Data
    Ling, Zhaolong
    Li, Bo
    Zhang, Yiwen
    Li, Ying
    Ling, Haifeng
    APPLIED INTELLIGENCE, 2023, 53 (05) : 5977 - 5997
  • [40] Manifold Learning for Visualizing and Analyzing High-Dimensional Data
    Zhang, Junping
    Huang, Hua
    Wang, Jue
    IEEE INTELLIGENT SYSTEMS, 2010, 25 (04) : 54 - 61