The general method to solve the inverse lattice problems in physics

被引:2
|
作者
Shen, YN [1 ]
Chen, ZD
Si, XH
机构
[1] Univ Sci & Technol Beijing, Dept Math & Mech, Beijing 100083, Peoples R China
[2] China Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R China
关键词
inverse lattice problem; Mobius inversion formula; partially order set;
D O I
10.1016/S0022-247X(03)00069-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By a system of linear equations on a multiplicative semigroup, we present a general mathematical method to determine the interatomic potential of various lattice structures in order to compute the performances of materials, and show the relation between the method and the Mobius inversion. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:723 / 739
页数:17
相关论文
共 50 条
  • [21] A New Integral Equation Method to Solve Highly Nonlinear Inverse Scattering Problems
    Zhong, Yu
    Lambert, Marc
    Lesselier, Dominique
    Chen, Xudong
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2016, 64 (05) : 1788 - 1799
  • [22] A SURVEY OF INVERSE PROBLEMS IN PHYSICS
    NEWTON, RG
    [J]. SIAM REVIEW, 1969, 11 (04) : 662 - &
  • [23] A class of inverse problems in physics
    Carter, AH
    [J]. AMERICAN JOURNAL OF PHYSICS, 2000, 68 (08) : 698 - 703
  • [24] Inverse problems for a general multi-connected bounded drum with applications in physics
    Zayed, EME
    [J]. ACTA MATHEMATICA SCIENTIA, 2003, 23 (01) : 104 - 116
  • [25] INVERSE PROBLEMS FOR A GENERAL MULTI-CONNECTED BOUNDED DRUM WITH APPLICATIONS IN PHYSICS
    E.M.E.Zayed
    [J]. Acta Mathematica Scientia, 2003, (01) : 104 - 116
  • [26] Inverse problems for a general multi-connected bounded drum with applications in physics
    Zayed, EME
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2003, 139 (2-3) : 231 - 248
  • [27] General method to solve combinatorial optimization problems with random neural networks
    Aguilar, J
    [J]. NUMERICAL METHODS IN ENGINEERING SIMULATION, 1996, : 349 - 356
  • [28] Spatiotemporal parallel physics-informed neural networks: A framework to solve inverse problems in fluid mechanics
    Xu, Shengfeng
    Yan, Chang
    Zhang, Guangtao
    Sun, Zhenxu
    Huang, Renfang
    Ju, Shengjun
    Guo, Dilong
    Yang, Guowei
    [J]. PHYSICS OF FLUIDS, 2023, 35 (06)
  • [29] Pocket guide to solve inverse problems with GlobalBioIm
    Soubies, Emmanuel
    Soulez, Ferreol
    McCann, Michael T.
    Thanh-an Pham
    Donati, Laurene
    Debarre, Thomas
    Sage, Daniel
    Unser, Michael
    [J]. INVERSE PROBLEMS, 2019, 35 (10)
  • [30] Using genetic algorithms to solve inverse problems
    Wang, Q.J.
    [J]. International Journal of Modelling and Simulation, 1999, 19 (04): : 323 - 328