PBW theoretic approach to the module category of quantum affine algebras

被引:2
|
作者
Kashiwara, Masaki [1 ,2 ,3 ]
Kim, Myungho [4 ]
Oh, Se-jin [5 ]
Park, Euiyong [6 ]
机构
[1] Kyoto Univ, Inst Adv Study, Sakyo Ku, Yoshida Ushinomiya Cho, Kyoto 6068501, Japan
[2] Kyoto Univ, Res Inst Math Sci, Kitashirakawa Oiwakecho, Kyoto 6068502, Japan
[3] Korea Inst Adv Study, 85 Hoegiro, Seoul 02455, South Korea
[4] Kyung Hee Univ, Dept Math, 26 Kyungheedae Ro, Seoul 02447, South Korea
[5] Ewha Womans Univ, Dept Math, 52 Ewhayeodae Gil, Seoul 03760, South Korea
[6] Univ Seoul, Dept Math, 163 Seoulsiripdae Ro, Seoul 02504, South Korea
基金
新加坡国家研究基金会; 日本学术振兴会;
关键词
Cuspidal modules; quantum affine Weyl-Schur duality; Hernandez-Leclerc category; quantum affine algebra; quiver Hecke algebra; QUIVER HECKE ALGEBRAS; FINITE-DIMENSIONAL REPRESENTATIONS; R-MATRICES; VARIETIES; BASES;
D O I
10.3792/pjaa.97.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let U-q'(g) be a quantum affine algebra of untwisted affine ADE type and let (0)(Cg) be Hernandez-Leclerc's category. For a duality datum D in (0)(Cg), we denote by F-D the quantum affine Weyl-Schur duality functor. We give a sufficient condition for a duality datum D to provide the functor F-D sending simple modules to simple modules. Moreover, under the same condition, the functor F-D has compatibility with the new invariants introduced by the authors. Then we introduce the notion of cuspidal modules in (0)(Cg), and show that all simple modules in( Cg)(0), can be constructed as the heads of ordered tensor products of cuspidal modules. We next state that the ordered tensor products of cuspidal modules have the unitriangularity property.
引用
收藏
页码:33 / 37
页数:5
相关论文
共 50 条
  • [1] PBW theory for quantum affine algebras
    Kashiwara, Masaki
    Kim, Myungho
    Oh, Se-jin
    Park, Euiyong
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (07) : 2679 - 2743
  • [2] Braid group action on the module category of quantum affine algebras
    Kashiwara, Masaki
    Kim, Myungho
    Oh, Se-jin
    Park, Euiyong
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2021, 97 (03) : 13 - 18
  • [3] CONVEX BASES OF PBW TYPE FOR QUANTUM AFFINE ALGEBRAS
    BECK, J
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (01) : 193 - 199
  • [4] An imaginary PBW basis for quantum affine algebras of type 1
    Cox, Ben
    Futorny, Vyacheslav
    Misra, Kailash C.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (01) : 83 - 100
  • [5] A new description of convex bases of PBW type for untwisted quantum affine algebras
    Ito, Ken
    HIROSHIMA MATHEMATICAL JOURNAL, 2010, 40 (02) : 133 - 183
  • [6] The meromorphic braided category arising in quantum affine algebras
    Soibelman, Y
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1999, 1999 (19) : 1067 - 1079
  • [7] Cluster algebras and category O for representations of Borel subalgebras of quantum afFine algebras
    Hernandez, David
    Leclerc, Bernard
    Algebra & Number Theory, 2016, 10 (09) : 2015 - 2052
  • [8] Quantum affine algebras and affine Hecke algebras
    Chari, V
    Pressley, A
    PACIFIC JOURNAL OF MATHEMATICS, 1996, 174 (02) : 295 - 326
  • [9] The Diamond Lemma and the PBW Property in Quantum Algebras
    Havlicek, M.
    Posta, S.
    ACTA POLYTECHNICA, 2010, 50 (05) : 40 - 45
  • [10] Cluster algebra structures on module categories over quantum affine algebras
    Kashiwara, Masaki
    Kim, Myungho
    Oh, Se-jin
    Park, Euiyong
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2022, 124 (03) : 301 - 372