PBW theoretic approach to the module category of quantum affine algebras

被引:2
|
作者
Kashiwara, Masaki [1 ,2 ,3 ]
Kim, Myungho [4 ]
Oh, Se-jin [5 ]
Park, Euiyong [6 ]
机构
[1] Kyoto Univ, Inst Adv Study, Sakyo Ku, Yoshida Ushinomiya Cho, Kyoto 6068501, Japan
[2] Kyoto Univ, Res Inst Math Sci, Kitashirakawa Oiwakecho, Kyoto 6068502, Japan
[3] Korea Inst Adv Study, 85 Hoegiro, Seoul 02455, South Korea
[4] Kyung Hee Univ, Dept Math, 26 Kyungheedae Ro, Seoul 02447, South Korea
[5] Ewha Womans Univ, Dept Math, 52 Ewhayeodae Gil, Seoul 03760, South Korea
[6] Univ Seoul, Dept Math, 163 Seoulsiripdae Ro, Seoul 02504, South Korea
基金
新加坡国家研究基金会; 日本学术振兴会;
关键词
Cuspidal modules; quantum affine Weyl-Schur duality; Hernandez-Leclerc category; quantum affine algebra; quiver Hecke algebra; QUIVER HECKE ALGEBRAS; FINITE-DIMENSIONAL REPRESENTATIONS; R-MATRICES; VARIETIES; BASES;
D O I
10.3792/pjaa.97.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let U-q'(g) be a quantum affine algebra of untwisted affine ADE type and let (0)(Cg) be Hernandez-Leclerc's category. For a duality datum D in (0)(Cg), we denote by F-D the quantum affine Weyl-Schur duality functor. We give a sufficient condition for a duality datum D to provide the functor F-D sending simple modules to simple modules. Moreover, under the same condition, the functor F-D has compatibility with the new invariants introduced by the authors. Then we introduce the notion of cuspidal modules in (0)(Cg), and show that all simple modules in( Cg)(0), can be constructed as the heads of ordered tensor products of cuspidal modules. We next state that the ordered tensor products of cuspidal modules have the unitriangularity property.
引用
收藏
页码:33 / 37
页数:5
相关论文
共 50 条
  • [21] PBW-bases of the twisted generic composition algebras of affine valued quivers
    Obul, A
    Zhang, GL
    JOURNAL OF ALGEBRA, 2006, 297 (02) : 333 - 360
  • [22] A quantum cluster algebra approach to representations of simply laced quantum affine algebras
    Léa Bittmann
    Mathematische Zeitschrift, 2021, 298 : 1449 - 1485
  • [23] A quantum cluster algebra approach to representations of simply laced quantum affine algebras
    Bittmann, Lea
    MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (3-4) : 1449 - 1485
  • [24] Quantum affine algebras and Grassmannians
    Chang, Wen
    Duan, Bing
    Fraser, Chris
    Li, Jian-Rong
    MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (3-4) : 1539 - 1583
  • [25] QUANTUM AFFINE WREATH ALGEBRAS
    Rosso, Daniele
    Savage, Alistair
    DOCUMENTA MATHEMATICA, 2020, 25 : 425 - 456
  • [26] Twisted Quantum Affine Algebras
    Vyjayanthi Chari
    Andrew Pressley
    Communications in Mathematical Physics, 1998, 196 : 461 - 476
  • [27] Twisted quantum affine algebras
    Chari, V
    Pressley, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 196 (02) : 461 - 476
  • [28] Quantum affine algebras and Grassmannians
    Wen Chang
    Bing Duan
    Chris Fraser
    Jian-Rong Li
    Mathematische Zeitschrift, 2020, 296 : 1539 - 1583
  • [29] Cells in quantum affine algebras
    Nakajima, H
    ALGEBRA COLLOQUIUM, 2004, 11 (01) : 141 - 154
  • [30] QUANTUM AFFINE ALGEBRAS AND THEIR REPRESENTATIONS
    KAZHDAN, D
    SOIBELMAN, Y
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 100 (1-3) : 217 - 224