Interpolating sequences for weighted Bergman spaces on strongly pseudoconvex bounded domains

被引:0
|
作者
Keshavarzi, Hamzeh [1 ]
机构
[1] Shiraz Univ, Coll Sci, Dept Math, Shiraz, Iran
关键词
Strongly pseudoconvex bounded domains; interpolating sequences; weighted Bergman spaces; CARLESON MEASURES;
D O I
10.1142/S0129167X21500269
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 0 < p < infinity, beta > -1, and omega be a strongly pseudoconvex bounded domain with a smooth boundary in DOUBLE-STRUCK CAPITAL Cn. We will study the interpolation problem for weighted Bergman spaces A beta p(omega). In the case, 1 <= p < infinity, and beta >max{n(2p - 1) - 1,n(2q - 1) - 1}, where q is the conjugate exponent of p (let q = 1, for p = 1), we show that a sequence in & Bopf;n, the unit ball in DOUBLE-STRUCK CAPITAL Cn, is interpolating for A beta p(& Bopf; n) if and only if it is separated.
引用
收藏
页数:14
相关论文
共 50 条