Approximation in weighted Bergman spaces and Hankel operators on strongly pseudoconvex domains

被引:0
|
作者
Jinshou Gao
Zhangjian Hu
机构
[1] Fujian Normal University,College of Mathematics and Informatics
[2] Huzhou University,Department of Mathematics
来源
Mathematische Zeitschrift | 2021年 / 297卷
关键词
Strongly pseudoconvex domains; Weighted Bergman spaces; Hankel operators; Primary 47B35; Secondary 32A36; 32T15;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose D is a bounded strongly pseudoconvex domain in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {C}}}^n$$\end{document} with smooth boundary, and let ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} be its defining function. For 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1< p<\infty $$\end{document} and α>-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >-1$$\end{document}, we show that the weighted Bergman projection Pα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\alpha $$\end{document} is bounded on Lp(D,|ρ|αdV)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(D, |\rho |^\alpha dV)$$\end{document}. With non-isotropic estimates for ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\partial }$$\end{document} and Stein’s theorem on non-tangential maximal operators, we prove that bounded holomorphic functions are dense in the weighted Bergman space Ap(D,|ρ|αdV)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^p(D, |\rho |^\alpha dV)$$\end{document}, and hence Hankel operators can be well defined on these spaces. For all 1<p,q<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p, q<\infty $$\end{document} we characterize bounded (resp. compact) Hankel operators from p-th weighted Bergman space to q-th weighted Lebesgue space with possibly different weights. As a consequence, we generalize the main results in Pau et al. (Indiana Univ Math J 65:1639–1673, 2016) and resolve a question posed in Lv and Zhu (Integr Equ Oper Theory, 2019).
引用
收藏
页码:1483 / 1505
页数:22
相关论文
共 50 条