TOEPLITZ OPERATORS AND SKEW CARLESON MEASURES FOR WEIGHTED BERGMAN SPACES ON STRONGLY PSEUDOCONVEX DOMAINS

被引:7
|
作者
Abate, Marco [1 ]
Mongodi, Samuele [2 ]
Raissy, Jasmin [3 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Largo Pontecorvo 5, I-56127 Pisa, Italy
[2] Politecn Milan, Dipartimento Matemat, Via Bonardi 9, I-20133 Milan, Italy
[3] Univ Toulouse, Inst Math Toulouse, UMR5219, CNRS,UPS, F-31062 Toulouse, France
关键词
Carleson measure; Toeplitz operator; strongly pseudoconvex domain; weighted Bergman spaces; MEASURE THEOREM;
D O I
10.7900/jot.2019jun03.2260
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study properties of Toeplitz operators on weighted Bergman spaces of bounded strongly pseudoconvex domains. We prove that a Toeplitz operator built using a weighted Bergman kernel of weight beta and integrating against a measure y maps continuously a weighted Bergman space A(alpha 1)(p1) (D) into A(alpha 2)(p2) (D) if and only if mu is a (lambda, gamma)-skew Carleson measure, where lambda = 1 + 1/p(1) - 1/P-2 and gamma = 1/lambda(beta + alpha(1)/p(1) - alpha(2)/P-2). This generalizes results obtained by Pau and Zhao on the unit ball, and by Abate, Raissy and Saracco on a smaller class of Toeplitz operators on strongly pseudoconvex domains.
引用
收藏
页码:339 / 364
页数:26
相关论文
共 50 条