Nuclear Reactors Safety Core Parameters Prediction using Artificial Neural Networks

被引:0
|
作者
Saber, Amany S. [1 ]
El-Koliel, Moustafa S. [1 ]
El-Rashidy, Mohamed A. [2 ]
Taha, Taha E. [2 ]
机构
[1] Atom Energy Author, Nucl Res Ctr, Cairo, Egypt
[2] Menoufiya Univ, Fac Elect Engn, Cairo, Egypt
关键词
Apriori Association Rules; Particle Swarm Optimization; Artificial Neural Networks; Effective Multiplication Factor; and Power Peaking Factor; PARTIAL LEAST-SQUARES; GENETIC ALGORITHM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The present work investigates an appropriate algorithm based on Multilayer Perceptron Neural Network (MPNN), Apriori association rules and Particle Swarm Optimization (PSO) models for predicting two significant core safety parameters; the multiplication factor K-eff and the power peaking factor P-max of the benchmark 10 MW IAEA LEU research reactor. It provides a comprehensive analytic method for establishing an Artificial Neural Network (ANN) with self-organizing architecture by finding an optimal number of hidden layers and their neurons, a less number of effective features of data set and the most appropriate topology for internal connections. The performance of the proposed algorithm is evaluated using the 2-Dimensional neutronic diffusion code MUDICO-2D to obtain the data required for the training of the neural networks. Experimental results demonstrate the effectiveness and the notability of the proposed algorithm comparing with Trainlm-LM, quasi-Newton (Trainbfg-BFGS), and Resilient Propagation (trainrp-RPROP) algorithms.
引用
收藏
页码:163 / 168
页数:6
相关论文
共 50 条
  • [41] Time series prediction using artificial neural networks
    Pérez-Chavarríia, MA
    Hidalgo-Silva, HH
    Ocampo-Torres, FJ
    CIENCIAS MARINAS, 2002, 28 (01) : 67 - 77
  • [42] Prediction of extrudate properties using artificial neural networks
    Shankar, T. J.
    Bandyopadhyay, S.
    FOOD AND BIOPRODUCTS PROCESSING, 2007, 85 (C1) : 29 - 33
  • [43] Prediction of groundwater drawdown using artificial neural networks
    Vahid Gholami
    Hossein Sahour
    Environmental Science and Pollution Research, 2022, 29 : 33544 - 33557
  • [44] Prediction of properties of rubber by using artificial neural networks
    Vijayabaskar, V
    Gupta, R
    Chakrabarti, PP
    Bhowmick, AK
    JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 100 (03) : 2227 - 2237
  • [45] Lactose Intolerance Prediction Using Artificial Neural Networks
    Spahic, Lemana
    Sehovic, Emir
    Secerovic, Alem
    Dozic, Zerina
    Smajlovic-Skenderagic, Lejla
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING, CMBEBIH 2019, 2020, 73 : 505 - 510
  • [46] Prediction of tunnel convergence using Artificial Neural Networks
    Mahdevari, Satar
    Torabi, Seyed Rahman
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2012, 28 : 218 - 228
  • [47] Prediction of Modal Shift Using Artificial Neural Networks
    Akgol, Kadir
    Aydin, Metin Mutlu
    Asilkan, Ozcan
    Gunay, Banihan
    TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2014, 3 (03): : 223 - 229
  • [48] Prediction of wheat yield using artificial neural networks
    Safa, B
    Khalili, A
    Teshnehlab, M
    Liaghat, AM
    15TH CONFERENCE ON BIOMETEOROLOGY AND AEROBIOLOGY JOINT WITH THE 16TH INTERNATIONAL CONGRESS ON BIOMETEOROLOGY, 2002, : 350 - 351
  • [49] Soil salinity prediction using artificial neural networks
    Patel, RM
    Prasher, SO
    Goel, PK
    Bassi, R
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2002, 38 (01): : 91 - 100
  • [50] Prediction of slump in concrete using artificial neural networks
    Agrawal, V.
    Sharma, A.
    World Academy of Science, Engineering and Technology, 2010, 69 : 25 - 32