Nuclear Reactors Safety Core Parameters Prediction using Artificial Neural Networks

被引:0
|
作者
Saber, Amany S. [1 ]
El-Koliel, Moustafa S. [1 ]
El-Rashidy, Mohamed A. [2 ]
Taha, Taha E. [2 ]
机构
[1] Atom Energy Author, Nucl Res Ctr, Cairo, Egypt
[2] Menoufiya Univ, Fac Elect Engn, Cairo, Egypt
关键词
Apriori Association Rules; Particle Swarm Optimization; Artificial Neural Networks; Effective Multiplication Factor; and Power Peaking Factor; PARTIAL LEAST-SQUARES; GENETIC ALGORITHM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The present work investigates an appropriate algorithm based on Multilayer Perceptron Neural Network (MPNN), Apriori association rules and Particle Swarm Optimization (PSO) models for predicting two significant core safety parameters; the multiplication factor K-eff and the power peaking factor P-max of the benchmark 10 MW IAEA LEU research reactor. It provides a comprehensive analytic method for establishing an Artificial Neural Network (ANN) with self-organizing architecture by finding an optimal number of hidden layers and their neurons, a less number of effective features of data set and the most appropriate topology for internal connections. The performance of the proposed algorithm is evaluated using the 2-Dimensional neutronic diffusion code MUDICO-2D to obtain the data required for the training of the neural networks. Experimental results demonstrate the effectiveness and the notability of the proposed algorithm comparing with Trainlm-LM, quasi-Newton (Trainbfg-BFGS), and Resilient Propagation (trainrp-RPROP) algorithms.
引用
收藏
页码:163 / 168
页数:6
相关论文
共 50 条
  • [21] Injury Prediction Based on Safety Climate Questionnaire Score Using Artificial Neural Networks
    Chang, Y. C.
    Lee, S. Y.
    Liu, P. L.
    Chang, C. C.
    2017 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2017, : 1241 - 1244
  • [22] Relative importance of parameters affecting wind speed prediction using artificial neural networks
    Ghorbani, M. A.
    Khatibi, R.
    Hosseini, B.
    Bilgili, M.
    THEORETICAL AND APPLIED CLIMATOLOGY, 2013, 114 (1-2) : 107 - 114
  • [23] Relative importance of parameters affecting wind speed prediction using artificial neural networks
    M. A. Ghorbani
    R. Khatibi
    B. Hosseini
    M. Bilgili
    Theoretical and Applied Climatology, 2013, 114 : 107 - 114
  • [24] Prediction of strength parameters of sedimentary rocks using artificial neural networks and regression analysis
    Yasin Abdi
    Amin Taheri Garavand
    Reza Zarei Sahamieh
    Arabian Journal of Geosciences, 2018, 11
  • [25] Prediction of flat-plate collector performance parameters using artificial neural networks
    Kalogirou, SA
    SOLAR ENERGY, 2006, 80 (03) : 248 - 259
  • [26] Prediction of Greenhouse Microclimatic Parameters Using Building Transient Simulation and Artificial Neural Networks
    Ecim-Duric, Olivera
    Milanovic, Mihailo
    Dimitrijevic-Petrovic, Aleksandra
    Mileusnic, Zoran
    Dragicevic, Aleksandra
    Miodragovic, Rajko
    AGRONOMY-BASEL, 2024, 14 (06):
  • [27] Prediction of strength parameters of sedimentary rocks using artificial neural networks and regression analysis
    Abdi, Yasin
    Garavand, Amin Taheri
    Sahamieh, Reza Zarei
    ARABIAN JOURNAL OF GEOSCIENCES, 2018, 11 (19)
  • [28] The use of artificial neural networks for the prediction of water quality parameters
    Maier, HR
    Dandy, GC
    WATER RESOURCES RESEARCH, 1996, 32 (04) : 1013 - 1022
  • [29] Prediction of psychrometric parameters using neural networks
    Sreekanth, S
    Ramaswamy, HS
    Sablani, S
    DRYING TECHNOLOGY, 1998, 16 (3-5) : 825 - 837
  • [30] Estimation of research reactor core parameters using cascade feed forward artificial neural networks
    Hedayat, Afshin
    Davilu, Hadi
    Barfrosh, Ahmad Abdollahzadeh
    Sepanloo, Kamran
    PROGRESS IN NUCLEAR ENERGY, 2009, 51 (6-7) : 709 - 718